Оборудование для производства кирпича ООО ВОГЕАН Строительство заводов по производству кирпича
Основная деятельность нашего предприятия: строительство заводов, производство оборудования, технологических линий и станков
по производству: кирпича, блока, тротуарной плитки, бордюров и других строительных материалов (вибропрессования и гиперпрессования),
а так же силикатного кирпича (с автоклавной обработкой) и керамического кирпича (с обжигом).

Фото продукции









Классификация нагрузок. Нормативные и расчетные нагрузки

В зависимости от продолжительности действия нагрузки делят на постоянные и временные. Временные нагрузки, в свою очередь, подразделяют на длительные, кратковременные, особые.
Постоянными являются нагрузки от веса несущих и ограждающих конструкций зданий и сооружений, массы и давления грунтов, воздействия предварительного напряжения железобетонных конструкций.
Длительными являются нагрузки от веса стационарного оборудования на перекрытиях — станков, аппаратов, двигателей, емкостей и т. п.; давление газов, жидкостей, сыпучих тел в емкостях; нагрузки в складских помещениях, холодильниках, архивах библиотеках и подобных зданиях и сооружениях; установленная нормами часть временной нагрузки в жилых домах, служебных и бытовых помещениях; длительные температурные технологические воздействия от стационарного оборудования; нагрузки от одного подвесного или одного мостового крана, умноженные на коэффициенты: 0,5 для кранов среднего режима работы и на 0,7 для кранов тяжелого режима работы; снеговые нагрузки для III—IV климатических районов с коэффициентами 0,3— 0,6. Указанные значения крановых, некоторых временных и снеговых нагрузок составляют часть полного их значения и вводятся в расчет при учете длительности действия нагрузок этих видов на перемещения, деформации, образование трещин. Полные значения этих нагрузок относятся к кратковременным.
Кратковременными являются нагрузки от веса людей, деталей, материалов в зонах обслуживания и ремонта оборудования — проходах и других свободных от оборудования участках; часть нагрузки на перекрытиях жилых и общественных зданий; нагрузки, возникающие при изготовлении, перевозке и монтаже элементов конструкций; нагрузки от подвесных и мостовых кранов, используемых при возведении или эксплуатации зданий и сооружений; снеговые и ветровые нагрузки; температурные климатические воздействия.
К особым нагрузкам относятся: сейсмические и взрывные воздействия; нагрузки, вызываемые неисправностью или поломкой оборудования и резким нарушением технологического процесса (например, при резком повышении или понижении температуры и т. п.); воздействия неравномерных деформаций основания, сопровождающиеся коренным изменением структуры грунта (например, деформации просадочных грунтов при замачивании или вечномерзлых грунтов при оттаивании), и др. Нормативные нагрузки устанавливаются нормами по заранее заданной вероятности превышения средних значений или по номинальным значениям. Нормативные постоянные нагрузки принимаются по проектным значениям геометрических и конструктивных параметров и по средним значениям плотности. Нормативные временные технологические и монтажные нагрузки устанавливаются по» наибольшим значениям, предусмотренным для нормальной эксплуатации; снеговые и ветровые — по средним из ежегодных неблагоприятных значений или по неблагоприятным значениям, соответствующим определенному среднему периоду их повторений.
Расчетные нагрузки для расчета конструкций на прочность и устойчивость определяют умножением нормативной нагрузки на коэффициент надежности по нагрузке у;, обычно больший единицы, например g=gnyf. Коэффициент надежности от веса бетонных и железобетонных конструкций Yf = M; от веса конструкций из бетонов на легких заполнителях (со средней плотностью 1800 кг/м3 и менее) и различных стяжек, засыпок, утеплителей, выполняемых в заводских условиях, Yf = l,2, на монтаже yf = l,3; от различных временных нагрузок в зависимости от их значения f = l, 2...1,4. Коэффициент перегрузки от веса конструкций при расчете на устойчивость положения против всплытия, опрокидывания и скольжения, а также в других случаях, когда уменьшение массы ухудшает условия работы конструкции, принят Yf = 0,9. При расчете конструкций на стадии возведения расчетные кратковременные ьагрузки умножают на коэффициент 0,8.
Конструкции должны быть рассчитаны на различные сочетания нагрузок или соответствующие им усилия, если расчет ведется по неупругой схеме. В зависимости от состава учитываемых нагрузок различают: основные сочетания, состоящие из постоянных, длительных и кратковременных нагрузок илн усилий от ннх; особые сочетания, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок или усилий от них.
Рассматриваются две группы основных сочетаний нагрузок. При расчете конструкций на основные сочетания первой группы учитываются нагрузки постоянные, длительные и одна кратковременная; прн расчете конструкций на основные сочетания второй группы учитываются нагрузки постоянные, длительные и две (или более) кратковременные; при этом значения кратковременных нагрузок или соответствующих им усилий должны умножаться на коэффициент сочетаний, равный 0,9.
При расчете конструкций на особые сочетания значения кратковременных нагрузок или соответствующих им усилий должны умножаться на коэффициент сочетаний, равный 0,8, кроме случаев, оговоренных в нормах проектирования зданий и сооружений в сейсмических районах.
Нормами допускается снижать временные нагрузки при расчете балок и ригелей в зависимости от площади загружаемого перекрытия. Степень ответственности зданий и сооружений Степень ответственности здании и сооружений при достижении конструкциями предельных состояний определяется размером материального и социального ущерба. При проектировании конструкций следует учитывать коэффициент надежности по назначению уп, значение которого зависит от класса ответственности зданий или сооружений. На коэффициент надежности по назначению следует делить предельные значения несущей способности, расчетные значения сопротивлений, предельные значения деформаций, раскрытия трещин или умножать на этот коэффициент расчетные значения нагрузок, усилий или иных воздействий. Нормативные и расчетные сопротивления бетона Класс бетона по прочности устанавливается с учетом статистической изменчивости прочности. Опытные исследования, проведенные на заводах сборных железобетонных изделий, показали, что для тяжелых бетонов и бетонов на пористых заполнителях коэффициент вариации = 0,135, который и принят в нормах.
Расчетное сопротивление сжатию тяжелого бетона классов В50, В55, В60 умножают на коэффициенты, учитывающие особенность механических свойств высокопрочного бетона (снижение деформаций ползучести), соответственно равные 0,95; 0,925 и 0,9.
При расчете элементов конструкций расчетные сопротивления бетона уменьшают, а в отдельных случаях увеличивают умножением на соответствующие коэффициенты условий работы бетона, учитывающие особенности свойств бетонов: длительность действия нагрузки и ее многократную повторяемость; условия, характер и стадию работы конструкции; способ ее изготовления, размеры сечения и т. п.
Расчетные сопротивления бетона для расчета по второй группе предельных состояний устанавливают при коэффициенте надежности по бетону, т. е. принимают равными нормативными значения и вводят в расчет с коэффициентом условий работы бетона, за исключением случаев расчета железобетонных элементов по образованию трещин при действии многократно повторной нагрузки, когда следует вводить коэффициент. Степень ответственности зданий и сооружений Степень ответственности здании и сооружений при достижении конструкциями предельных состояний определяется размером материального и социального ущерба. При проектировании конструкций следует учитывать коэффициент надежности по назначению уп, значение которого зависит от класса ответственности зданий или сооружений. На коэффициент надежности по назначению следует делить предельные значения несущей способности, расчетные значения сопротивлений, предельные значения деформаций, раскрытия трещин или умножать на этот коэффициент расчетные значения нагрузок, усилий или иных воздействий. Нормативные и расчетные сопротивления арматуры Нормативные сопротивления арматуры устанавливают с учетом статистической изменчивости прочности и принимают равными наименьшему контролируемому значению: для стержневой арматуры — физического предела текучести или условного предела текучести, для проволочной арматуры — условного предела текучести. Нормами установлена доверительная вероятность нормативного сопротивления арматуры 0,95.
Расчетные сопротивления арматуры растяжению для расчета по первой группе предельных состояний определяют делением нормативных сопротивлений на соответствующие коэффициенты надежности по арматуре
Расчетные сопротивления арматуры сжатию Rsc, используемые в расчете конструкций по первой группе предельных состояний, при сцеплении арматуры с бетоном принимают равными соответствующим расчетным сопротивлениям арматуры растяжению Rs, но не более 400 МПа (исходя из предельной сжимаемости бетона).
При расчете элементов конструкций расчетные сопротивления арматуры снижаются или в отдельных случаях повышаются умножением на соответствующие коэффициенты условий работы, учитывающие возможность неполного использования ее прочностных характеристик в связи с неравномерным распределением напряжений в сечении, низкой прочностью бетона, условиями анкеровки, наличием загибов, характером диаграммы растяжения стали, изменением ее свойств в зависимости от условий работы конструкции и т. п.
При расчете элементов на действие поперечной силы расчетные сопротивления поперечной арматуры снижают введением коэффициента условий работы, учитывающего неравномерность распределения напряжений в арматуре по длине наклонного сечения. Кроме того, для сварной поперечной арматуры из проволоки классов Вр-I и стержневой арматуры класса A-III введен коэффициент, учитывающий возможность хрупкого разрушения сварного соединения хомутов.
Кроме того, расчетные сопротивления Rs, Rsc и Rsw следует умножать на коэффициенты условий работы: Vs3, Ys4 — при многократном приложении нагрузки.
Расчетные сопротивления арматуры для расчета по второй группе предельных состояний устанавливают при коэффициенте надежности по арматуре, т.е. принимают равными нормативным значениям и вводят в расчет с коэффициентом условий работы арматуры. Три категории требований к трещиностойкости железобетонных конструкций Трещиностойкостью железобетонной конструкции называют ее сопротивление образованию трещин в стадии I напряженно- деформированного состояния или сопротивление раскрытию трещин в стадии II напряженно-деформированного состояния.
К трещиностойкости железобетонной конструкции или ее частей предъявляются при расчете различные требования в зависимости от вида применяемой арматуры. Эти требования относятся к нормальным и наклонным к продольной оси элемента трещинам и подразделяются на три категории:
первая категория — не допускается образование трещин;
вторая категория — допускается ограниченное по ширине непродолжительное раскрытие трещин при условии их последующего надежного закрытия (зажатия);
третья категория — допускается ограниченное по ширине непродолжительное и продолжительное раскрытие трещин.
Непродолжительным считается раскрытие трещин при действии постоянных, длительных и кратковременных нагрузок; продолжительным считается раскрытие трещин при действии только постоянных и длительных нагрузок. Предельная ширина раскрытия трещин (dcrci — непродолжительная и аСга продолжительная), при которой обеспечиваются нормальная эксплуатация зданий, коррозионная стойкость арматуры и долговечность конструкции, в зависимости от категории требований по трещиностойкости не должна превышать 0,05— 0,4 мм.
Предварительно напряженные элементы, находящиеся под давлением жидкости или газов (резервуары, напорные трубы и т.п.), при полностью растянутом сечении со стержневой или проволочной арматурой, а также при частично сжатом сечении с проволочной арматурой диаметром 3 мм и менее должны отвечать требованиям первой категории. Другие предварительно напряженные элементы в зависимости от условий рабйты конструкции и вида арматуры должны отвечать требованиям второй или третьей категории. Конструкции без предварительного напряжения, армированные стержневой арматурой
Порядок учета нагрузок при расчете по трещиностойкости зависит от категории требований по трещиностойкости: при требованиях первой категории расчет ведут по расчетным нагрузкам с коэффициентом надежности по нагрузке (как при расчете на прочность); при требованиях второй и третьей категорий расчет ведут на действие нагрузок с коэффициентом. Расчет по образованию трещин для выяснения необходимости проверки по кратковременному раскрытию трещин при требованиях второй категории выполняют на действие расчетных нагрузок с коэффициентом; расчет по образованию трещин для выяснения необходимости проверки по раскрытию трещин при требованиях третьей категории выполняют иа действие нагрузок с коэффициентом. В расчете по трещиностойкости учитывают совместное действие всех нагрузок, кроме особых. Особые нагрузки учитывают в расчете по образованию трещин в тех случаях, когда трещины приводят к катастрофическому положению. Расчет по закрытию трещин при требованиях второй категории производят на действие постоянных и длительных нагрузок с коэффициентом. На концевых участках предварительно напряженных элементов в пределах длины зоны передачи напряжений с арматуры на бетон 1Р не допускается образование трещин при совместном действии всех нагрузок (кроме особых), вводимых в расчет с коэффициентом. Это требование вызвано тем, что преждевременное образование трещин в бетоне на концевых участках элементов может привести к выдергиванию арматуры из бетона под нагрузкой и внезапному разрушению. Трещины, если они возникают при изготовлении, транспортировании и монтаже в зоне, которая, впоследствии под нагрузкой будет сжатой, приводят к снижению усилий образования трещин в растянутой при эксплуатации зоне, увеличению ширины их раскрытия и увеличению прогибов. Влияние этих трещин учитывается в расчетах конструкций. Для элементов, работающих в условиях действия многократно повторных нагрузок и рассчитываемых на выносливость, образование таких трещин не допускается. Основные положения расчета В расчетах на прочность исходят из III стадии напряженно-деформированного состояния. Сечение конструкции обладает необходимой прочностью, если усилия от расчетных нагрузок не превышают усилий, воспринимаемых сечением при расчетных сопротивлениях материалов с учетом коэффициента условий работы. Усилие от расчетных нагрузок Т (например, изгибающий момент или продольная сила) является функцией нормативных нагрузок, коэффициентов надежности и других факторов С (расчетной схемы, коэффициента динамичности и др.). Усилие, воспринимаемое сечением, является, в свою очередь, функцией формы и размеров сечения S, прочности материалов, коэффициентов надежности по материалам и коэффициентов условий работы.
Предельные состояния второй группы. Расчет по образованию трещин, нормальных и наклонных к продольной оси элемента, производят для проверки трещино-, стойкости элементов, к которым предъявляют требования первой категории, а также чтобы установить, появляются ли трещины в элементах, к трещиностойкости которых предъявляют требования второй и третьей категории. Считается, что трещины, нормальные к продольной оси, не появляются, если усилие Т (изгибающий момент или продольная сила) от действия нагрузок не будет превосходить усилия, которое может быть воспринято сечением элемента.
Считается, что трещины, наклонные к продольной оси элемента, не появляются, если главные растягивающие напряжения в бетоне не превосходят расчетных значений.
Расчет по раскрытию трещин,, нормальных и наклонных к продольной оси, заключается в определении ширины раскрытия трещин на уровне растянутой арматуры и сравнении ее с предельной шириной раскрытия.
Расчет по перемещениям заключается в определении прогиба элемента от нагрузок с учетом длительности их действия и сравнении его с предельным прогибом.
Предельные прогибы устанавливаются различными требованиями: технологическими, обусловленными нормальной работой кранов, технологических установок, машин и т. п.; конструктивными, обусловленными влиянием соседних элементов, ограничивающих деформации, необходимостью выдерживать заданные уклоны и т. п. эстетическими.
Предельные прогибы предварительно напряженных элементов могут быть увеличены на высоту выгиба, если это не ограничивается технологическими или конструктивными требованиями.
Порядок учета нагрузок при расчете прогибов установлен следующий: при ограничении технологическими или конструктивными требованиями — на действие постоянных, длительных и кратковременных нагрузок; при ограничении эстетическими требованиями — на действие постоянных и длительных нагрузок. Значения предварительных напряжений в арматуре и бетоне Создаваемое искусственно предварительное напряжение в арматуре и бетоне имеет весьма существенное значение для последующей работы элементов под нагрузкой. При малых предварительных напряжениях в арматуре и малом обжатии бетона эффект предварительного напряжения с течением времени будет утрачен вследствие релаксации напряжений в арматуре, усадки и ползучести бетона и других технологических и конструктивных факторов. При высоких напряжениях в арматуре, близких к нормативному сопротивлению, в проволочной арматуре возникает опасность разрыва при натяжении, а в горячекатаной — опасность развития значительных остаточных деформаций.
Передаточная прочность бетона, или кубиковая прочность бетона, к моменту обжатия устанавливается так, чтобы при обжатии не создавался слишком высокий уровень напряжения, сопровождающийся значительными деформациями ползучести и потерей предварительного напряжения в арматуре.
С увеличением диаметра и расчетного сопротивления арматуры увеличиваются и принимаемые классы бетона. Потери предварительных напряжений в арматуре Начальные предварительные напряжения в арматуре не остаются постоянными, с течением времени они уменьшаются. Различают первые потери предварительного напряжения в арматуре, происходящие при изготовлении элемента и обжатии бетона, и вторые потери, происходящие после обжатия бетона.
Первые потери
1. Потери от релаксации напряжений в арматуре при натяжении на упоры зависят от епособа натяжения и вида арматуры:
при механическом способе натяжения, МПа: высокопрочной арматурной проволоки и канатов, стержневой арматуры; при электротермическом и электротермомеханическом способах натяжения: высокопрочной арматурной проволоки и канатов, стержневой арматуры.
2. Потери от температурного перепада, т. е. от разности температуры натянутой арматуры и устройств, воспринимающих усилие натяжения при пропаривании или прогреве бетона.
3. Потери от деформации анкеров, расположенных у натяжиых устройств вследствие обжатия шайб, смятия высаженных головок, смещения стержней в зажимах или в захватах при механическом натяжении на упоры.
4. Потери от трения арматуры:
а) о стенки каналов или поверхность конструкции при натяжении на бетон
б) об огибающие приспособления при натяжении на упоры
6. Потери от быстронатекающей ползучести бетона зависят от условий твердения, уровня напряжений и класса бетона; развиваются они при обжатии (и в первые 2—3 ч после обжатия).
Вторые потери
7. Потери от релаксации напряжений в арматуре при натяжении на бетон высокопрочной арматурной проволоки и стержневой арматуры принимаются такими же, как и при натяжении на упоры. 8. Потери от усадки бетона и укорочения элемента зависят от вида бетона, способа натяжения арматуры, условий твердения.
9. Потери от ползучести бетона (следствие соответствующего укорочения элемента) зависят от вида бетона, условий твердения, уровня напряжений
10. Потери от смятия бетона под витками спиральной или кольцевой арматуры (при диаметре труб, резервуаров до 3 м)
11. Потери от деформаций обжатия стыков между блоками сборных конструкций.
Для конструкций, эксплуатируемых при влажности воздуха окружающей среды ниже 40 %, потери от усадки и ползучести бетона увеличиваются на 25 %. Для конструкций, эксплуатируемых в районах с сухим жарким климатом, эти потери увеличиваются на 50 %.
При натяжении арматуры на упоры учитывают:
первые потери — от релаксации напряжений в арматуре, температурного перепада, деформации анкеров, трения арматуры об огибающие приспособления, деформации стальных форм, деформации бетона от быстронатекающей ползучести;
вторые потери — от усадки и ползучести.
При натяжении арматуры на бетон учитывают:
первые потери — от деформации анкеров, трения арматуры о стенки каналов (или поверхности бетона конструкций);
вторые потери — от релаксации напряжений в арматуре, усадки и ползучести бетона, смятия бетона под витками арматуры, деформации стыков между блоками.
Суммарные потери при любом способе натяжения могут составлять около 30 % начального предварительного напряжения. В расчетах конструкций суммарные потери должны приниматься не менее 100 МПа. Напряжения в ненапрягаемой арматуре В ненапрягаемой арматуре предварительно напряженных элементов под влиянием совместных с бетоном деформаций возникают начальные сжимающие напряжения: при обжатии бетона, равные потерям от быстро-натекающей ползучести, а перед загружением элемента, равные также н потерям от усадки и ползучести бетона, а перед загружением элемента, равные также и потерям от усадки и ползучести бетона. Усилие предварительного обжатия бетона Усилие предварительного обжатия бетона принимают равным равнодействующей усилий в напрягаемой и ненапрягаемой арматуре, а эксцентриситет этого усилия относительно центра тяжести приведенного сечения определяют из условия равенства моментов равнодействующей и составляющих. Приведенное сечение Чтобы определить напряжения в сечениях предварительно напряженных железобетонных элементов в стадии до образования трещин, рассматривают приведенное бетонное сечение, в котором площадь сечения арматуры заменяют эквивалентной площадью сечения бетона. Исходя из равенства деформаций арматуры и бетона, приведение выполняют по отношению модулей упругости двух материалов. Напряжения в бетоне при обжатии При обжатии в бетоне развиваются неупругне деформации, эпюра нормальных напряжений приобретает криволинейное очертание. В зависимости от цели расчета напряжения в бетоне определяют в разных по высоте сечения уровнях:
а) при установлении контролируемого напряжения в арматуре, натягиваемой на бетон, напряжения в бетоне определяют в уровне усилий в напрягаемой арматуре.
б) при проверке предельных напряжений при обжатии напряжения в бетоне определяют в уровне крайнего сжатого волокна
в) при расчете потерь от быстронатекающей ползучести и от ползучести напряжения в бетоне определяют на уровне центра тяжести напрягаемой арматуры по формулам. Последовательность изменения предварительных напряжений в элементах после загружения внешней нагрузкой Центрально-растянутые элементы. При изготовлении элемента арматуру натягивают до начального контролируемого напряжения на упоры форм, производят бетонирование, тепловую обработку и выдерживают в форме до приобретения бетоном необходимой передаточной прочности. В этом состоянии произошли первые потери в основной их части. Затем при освобождении с упоров форм и отпуске натяжения арматуры благодаря сцеплению материалов создается обжатие бетона, развиваются деформации быстронатекающей ползучести и происходят потери.
С течением времени происходят вторые потери, соответственно уменьшаются и упругие напряжения в бетоне.
После загружения элемента при постепенном увеличении внешней нагрузки напряжения в бетоне от предварительного обжатия погашаются.
Дальнейшее увеличение нагрузки приводит к появлению в бетоне предельных растягивающих напряжений.
Изгибаемые элементы. При натяжении на упоры форм верхнюю и нижнюю арматуру натягивают на величину начальных контролируемых напряжений. После бетонирования и твердения в процессе тепловой обработки происходит основная часть первых потерь предварительных напряжений в арматуре. После приобретения бетоном необходимой прочности арматура освобождается с упоров форм и обжимает бетон; предварительные напряжения в арматуре в результате быстронатекающей ползучести и упругого обжатия бетона уменьшаются. При этом вследствие несимметричного армирования и внецентренного обжатия элемент получает выгиб. С течением времени происходят вторые потерн напряжений арматуры. После загружения внешней нагрузкой погашаются напряжения обжатия в бетоне.
При увеличении нагрузки напряжения в бетоне растянутой зоны достигают предельных Rbtn. Это и будет концом напряженно-деформированного состояния при изгибе. При изгибе, как и при растяжении, перед образованием трещин напряжение в растянутой арматуре превышает соответствующее напряжение в арматуре элементов без предварительного напряжения. Этим и определяется значительно более высокое сопротивление образованию трещин при изгибе предварительно напряженных элементов. При увеличении нагрузки в растянутой зоне появляются трещины, наступает стадия напряженно-деформированного состояния. С дальнейшим увеличением нагрузки растягивающие напряжения в арматуре и бетоне достигают предельных, происходит разрушение. Напрягаемая арматура площадью сечения, расположенная в зоне, сжатой от действия внешней нагрузки, деформируется совместно с бетоном сжатой зоны, при этом предварительные растягивающие напряжения в ней уменьшаются. Граничная высота сжатой зоны В сечениях, нормальных к продольной оси элементов,— изгибаемых, внецентренно сжатых, внецентренно растянутых при двузначной эпюре напряжений характерно одно и то же напряженно-деформированное состояние. В расчетах прочности усилия, воспринимаемые сечением, нормальным к продольной оси элемента, определяют по расчетным сопротивлениям материалов с учетом коэффициентов условий работы. При этом принимают следующие исходные положения: бетон растянутой зоны не работает — сопротивление Rbt равно нулю; бетон сжатой зоны испытывает расчетное сопротивление Rb — эпюра напряжений прямоугольная; продольная растянутая арматура испытывает напряжения, не превышающие расчетное сопротивление; продольная арматура в сжатой зоне сечения испытывает напряжение osc. В общем случае условие прочности при любом из перечисленных внешних воздействий формулируется в виде требования о том, чтобы момент внешних снл не превосходил момента внутренних усилий.
Для расчета прочности внецентренно сжатых элементов в нормах приводится другая упрощенная зависимость по определению граничной высоты сжатой зоны.
Таким образом, в общем случае расчет прочности сечения, нормального к продольной оси, производится в зависимости от значения относительной высоты сжатой зоны.
Напряжения высокопрочной арматуры as в предельном состоянии могут превышать условный предел текучести. Предельные проценты армирования Предельные проценты армирования изгибаемых элементов с одиночной арматурой (расположенной только в растянутой зоне) определяют из уравнения равновесия предельных усилий при высоте сжатой зоны, равной граничной.
Предельные проценты армирования с повышением класса бетона увеличиваются, а с повышением класса арматуры уменьшаются. Сечения изгибаемых элементов, имеющие проценты армирования, превышающие предельные, называют переармированными.
Нижний предел процента армирования, или минимальный процент армирования, установлен из конструктивных соображений для восприятия не учитываемых расчетом различных усилий (усадочных, температурных и т. п.). Для изгибаемых и внецентренно растянутых сечений минимальный процент армирования продольной растянутой арматурой для внецентренно растянутых элементов при расположении продольной силы между арматурой в пределах расстояния на каждой грани сечения.
В тавровых сечениях с полкой в сжатой зоне минимальный процент армирования относится к площади сечения ребра.
Напряжения в ненапрягаемой арматуре с условным пределом текучести при смешанном армировании
При смешанном армировании предварительно напряженных элементов часть продольной арматуры класса A-IV или A-V с условным пределом текучести применяется без предварительного напряжения. Диаграмма растяжения ненапрягаемой арматуры развивается совместно с диаграммой растяжения напрягаемой арматуры, становится сопряженной с ней. На диаграмме по оси ординат отложим предварительное напряжение с учетом первых и вторых потерь и возникающее при этом вследствие ползучести и усадки бетона сжимающее напряжение в ненапрягаемои арматуре.
Напряжения в ненапрягаемои арматуре являются расчетными для расчета прочности и проектирования конструкций.


Версия для печати  Версия для печати


 


Энциклопедия по бетону Все о бетоне и его свойства Применение бетона в стройиндустрии Строительное оборудование Бетонные работы Все о кирпиче Все о цементе и его свойствах Нерудные материалы Сухие смеси Железобетонные иделия и конструкции Статьи о строительстве и стройиндустрии Строительные материалы Строительные материалы - часть 2 Снабжение Промышленноcть и оборудование Промышленноcть и оборудование - часть 2

Смотрите так же другие статьи
Оборудование для производства гиперпрессованного кирпича, тротуарной плитки и других строительных материалов ВАРИАНТ 1 СПЕЦИФИКАЦИЯ № 1  Оборудование которые изготовляется в г.Каменск-Шахтинский РФ. ВАРИАНТ 1    5 млн.шт... >>>
 
Оборудование для производства гиперпрессованного кирпича, тротуарной плитки и других строительных материалов ВАРИАНТ 2 СПЕЦИФИКАЦИЯ № 1  Оборудование которые изготовляется в г.Каменск-Шахтинский РФ. ГИПЕРПРЕССОВАНИЕ За... >>>
 
Оборудование для производства гиперпрессованного кирпича, тротуарной плитки и других строительных материалов ВАРИАНТ 3 СПЕЦИФИКАЦИЯ № 1  Оборудование которые изготовляется в г.Каменск-Шахтинский РФ. ГИПЕРПРЕССОВАНИЕ За... >>>
 
Быстротвердеющий портландцемент Этот цемент аналогичен обычному портландцементу: на него распространяются требования BS 12: 1958. Быстротвердеющий портландцемент (тип III), как видно из его названия, ускоренно набирает прочность и, следовательно, его можно более правильно охарактеризовать как цемен... >>>
 
Особобыстротвердеющий портландцемент Этот цемент получают совместным помолом клинкера быстротвердеющего портландцемента и хлористого кальция. Количество хлористого кальция не должно превышать 2%. Поскольку хлористый кальций является гигроскопическим веществом, особобыстротвердеющий цемент необходим... >>>
 
Портландцемент с умеренной экзотермией Возрастание температуры внутри массивных бетонных сооружений в результате тепловыделения при гидратации цемента может привести к образованию трещин. Поэтому в массивных конструкциях необходимо применять цементы с пониженной скоростью тепловыделения: в этом слу... >>>
 
Термоподвески и системы контроля температуры хранения зерна При длительном хранении зерна вопрос измерения и контроля его температуры выходит на передний план, т.к. из-за эффекта самосогревания при повышении температуры выше 35°С происходит порча зерна, что приводит к многомиллионным... >>>
 
Классификация зубообрабатывающих станков Зубообрабатывающие станки предназначены для обработки зубчатых колёс, червяков и зубчатых реек. В зависимости от применяемого инструмента различают зубофрезерные, зубодолбёжные, зубострогальные, зубоотделочные (зубошевинговальные, зубошлифовальные, зубохон... >>>
 
Подробнее о токарном оборудовании Токарные станки применяются для обработки преимущественно тел вращения путём снятия с них стружки при точении. Токарный станок - один из древнейших станков, на основе которого создавались станки сверлильной, расточной и др. групп. Токарные станки составляют значи... >>>
 


© 2005-2024 г. http://vogean.com Все права защищены. Группа компаний "ВОГЕАН".
Сайт работает на системе управления сайтом General-CMS

Rambler's Top100 Яндекс цитирования џндекс.Њетрика