Оборудование для производства кирпича ООО ВОГЕАН Строительство заводов по производству кирпича
Основная деятельность нашего предприятия: строительство заводов, производство оборудования, технологических линий и станков
по производству: кирпича, блока, тротуарной плитки, бордюров и других строительных материалов (вибропрессования и гиперпрессования),
а так же силикатного кирпича (с автоклавной обработкой) и керамического кирпича (с обжигом).

Фото продукции









Основы проектирования железобетонных элементов


Критерием наибольшей экономической эффективности при сопоставлении взаимозаменяемых строительных конструкций (отвечающих требуемым эксплуатационным качествам, имеющих соизмеримые сроки службы и равную огнестойкость) является минимум приведенных затрат, которые слагаются из текущих издержек d (себестоимости строительно-монтажных работ или эксплуатационных расходов) и единовременных затрат (капитальных вложений или стоимости производственных фондов), приведенных к годовой размерности в соответствии с установленным нормативным коэффициентом эффективности капитальных вложений.
Приведенные затраты проектируемых строительных конструкций образуются из их стоимости «в деле» (с учетом снижения условно-постоянных накладных расходов в результате уменьшения продолжительности и трудоемкости возведения), приведенных к году начала эксплуатации объекта, и затрат, зависящих от размера капитальных вложений в строительную базу, а также эксплуатационных расходов (с учетом возможных народнохозяйственных потерь от недовыпуска продукции).
Оптимальная по стоимости конструкция данного вида (железобетонная балка, кровельная плита, стропильная ферма, колонна и т. п.) из совокупности возможных решений, отличающихся междусобой геометрическими размерами, интенсивностью армирования, классом арматурной стали, маркой бетона, технологией изготовления и т. д., может быть определена в первом приближении только по стоимости конструкции в деле. Заметное влияние оказывает учет изменений в стоимости сопряженных конструкций (стенового ограждения, колнн, фундаментов), а также эксплуатационных расходов на отопление и вентиляцию помещений, связанных с изменением строительной высоты покрытия (перекрытия) при варьировании внешних габаритных размеров изучаемой конструкции. Этим можно пренебречь, если сопоставляются однотипные конструкции или если имеется в виду применение конструкций для зданий с большими площадями.
Расчетная себестоимость конструкции в деле Сн.д (в законченном здании) на стадии проектирования слагается из полной расчетной стоимости ее изготовления (заводской) Ск, затрат Ст на транспортирование конструкции от завода- изготовителя до строительной площадки, стоимости монтажа См и изменяющейся части накладных расходов строительства. При этом должны учитываться заготовительно-складские расходы строительства коэффициентом 1,02 (усредненное значение), удорожание работ в зимних условиях (если оно имеется) коэффициентом k3, который равен 1,025 (при объеме работ по замоноличиванию, не превышающем 15 % объема работ по изготовлению применяемых сборных конструкций).
Определение расчетной производственной себестоимости конструкции необходимо для ориентировочной технико- экономической оценки данной запроектированной конструкции или для установления конструкции с такими параметрами, которые обусловливают ее минимальную себестоимость. Проектирование железобетонных элементов и конструкции минимальной стоимости Результаты по определению расчетной минимальной себестоимости элементов используются для определения расчетной минимальной себестоимости конструкций, образуемых из этих элементов, с учетом требований унификации и возможных отклонений от Cest по признаку минимального суммарного удорожания стоимости всех элементов в конструкции. После этого может быть установлена расчетная стоимость конструкции.
Стоимость транспортирования конструкции Ст в формуле в соответствии с заданными условиями может не варьироваться или же варьироваться самостоятельно в зависимости от дальности расстояния перевозки от завода-изготовителя до места строительства и вида транспорта (автомобильный, железнодорожный или иной). Если возможны сопоставимые варианты заводов-изготовителей с разной технологией изготовления, то варьирование Ст и Ск нужно производить во взаимной увязке.
Стоимость монтажа См в формуле может варьироваться также самостоятельно, но если методы монтажа заметно влияют на факторы Тс в формуле, то варьирование См следует вести совместно с Ск.
Стоимость транспортирования конструкции Ст и стоимость ее монтажа См могут считаться независимыми друг от друга. При немногократном применении конструкций определение минимальной себестоимости их элементов может устанавливаться при удовлетворении ограниченному числу требований СНиП (с проверкой по остальным требованиям и необходимой корректировкой). При многократном применении конструкций определение минимальной стоимости их элементов должно производиться с учетом всех требований СНиП. Конструктивные схемы компоновки железобетонных конструкций
Конструкции промышленных и гражданских зданий состоят из отдельных элементов, связанных в единую систему. Здание в целом должно надежно сопротивляться деформированию в горизонтальном направлении от действия различных нагрузок и воздействий, т. е. должно обладать достаточной пространственной жесткостью. При загружении одного из элементов здания в работу включаются и другие элементы, происходит пространственная работа. Отдельные элементы зданий — плиты и балки перекрытий, колонны, стены и др.— должны обладать прочностью и устойчивостью, достаточной жесткостью и трещиностойкостью и участвовать в общей работе здания. Учет пространственной работы зданий приводит к более экономичным конструкциям.
Конструктивные схемы зданий, удовлетворяющие изложенным требованиям, могут быть каркасными и панельными (бескаркасными), многоэтажными и одноэтажными. Каркас многоэтажного здания образуется из основных вертикальных и горизонтальных элементов — колонн и ригелей. В каркасном здании горизонтальные воздействия (ветер, сейсмика и т. п.) могут восприниматься совместно каркасом и вертикальными связевыми диафрагмами, соединенными перекрытиями в единую пространственную систему, или же только каркасом, как рамной конструкцией, при отсутствии вертикальных диафрагм. В многоэтажном панельном здании горизонтальные воздействия воспринимаются совместно поперечными и продольными стенами, также соединенными перекрытиями в пространственную систему. Каркас одноэтажного здания образуется из колонн, заделанных в фундамент, и ригелей, шарнирно или жестко соединенных с колоннами.
Железобетонные конструкции при всех возможных конструктивных схемах зданий должны быть индустриальными и экономичными. Их проектируют так, чтобы максимально использовались машины и механизмы при изготовлении и монтаже зданий и сводились к минимуму затраты ручного труда и строительных материалов. В наибольшей степени этим требованиям отвечают сборные железобетонные конструкции заводского изготовления.
С изменением температуры железобетонные конструкции деформируются — укорачиваются или удлиняются, а вследствие усадки бетона укорачиваются. При неравномерной осадке основания части конструкций взаимно смещаются в вертикальном направлении.
В большинстве случаев железобетонные конструкции представляют собой статически неопределимые системы, и поэтому от изменения температуры, усадки бетона, а также от неравномерной осадки фундаментов в них возникают дополнительные усилия, что может привести к появлению трещин или к разрушению части конструкции.
Чтобы уменьшить усилия от температуры и усадки, железобетонные конструкции делят по длине и ширине температурно- усадочными швами на отдельные части — деформационные блоки.
Для железобетонных конструкций одноэтажных каркасных зданий допускается увеличивать расстояния между температурно -усадочными швами на 20 % сверх значений, указанных в таблице. Расстояния между температурными швами, указанные в таблице, допустимы при расположении вертикальных связей каркасных зданий в середине деформационного блока. Если же связи расположены по краям деформационного блока, то работа здания при температурно-усадочных деформациях приближается по характеру к работе сплошных конструкций.
Температурно-усадочные швы выполняются в надземной части здания — от кровли до верха фундамента, разделяя при этом перекрытия и стены. Ширина температурно-усадочных швов обычно составляет 2—3 см, она уточняется расчетом в зависимости от длины температурного блока и температурного перепада. Наиболее четкий температурно-усадочный шов конструкции здания создается устройством парных колонн и парных балок по ним.
Осадочные швы устраивают между частями зданий разной высоты или в зданиях, возводимых на участке с разнородными грунтами; такими швами делят и фундаменты. Осадочные швы можно устраивать также с помощью вкладного пролета из плит и балок. Осадочный шов служит одновременно и температурно-усадочным швом здания. Типизация сборных элементов Производство сборных железобетонных элементов наиболее эффективно в том случае, когда на заводе изготовляют серии однотипных элементов. Технологический процесс при этом совершенствуется, снижается трудоемкость изготовления и стоимость изделий, улучшается их качество. Отсюда вытекает важнейшее требование, чтобы число типов элементов в здании было ограниченным, а применение их — массовым (для возможно большего числа зданий различного назначения). С этой целью типизируют элементы, т. е. для каждого конструктивного элемента здания отбирают наиболее рациональный, проверенный на практике, тип конструкции с наилучшими по сравнению с другими решениями технико-экономическими показателями (расход материалов, масса, трудоемкость изготовления и монтажа, стоимость). Выбранный таким образом тип элемента принимается для массового заводского изготовления.
Опыт типизации показывает, что для изгибаемых элементов, например панелей перекрытий, целесообразно при изменении длины элемента или нагрузки, действующей на элемент, сохранять размеры поперечного сечения, увеличивая лишь сечение арматуры. Для балок покрытий, длина которых и значения нагрузок меняются в большом диапазоне, рекомендуется менять и размеры сечения и армирование. Для колонн многоэтажных гражданских зданий (а в ряде случаев и промышленных) следует сохранять неизменными размеры поперечных сечений и изменять по этажам здания лишь сечение арматуры и в необходимых случаях класс бетона. При этом, несмотря на некоторый излишний расход бетона в колоннах верхних этажей, общая стоимость конструкции снижается благодаря многократному использованию форм, унификации арматурных каркасов. Кроме того, при постоянных размерах сечения колонн по этажам соблюдается однотипность балок перекрытий, опирающихся на колонны. В результате работы по типизации составлены каталоги сборных железобетонных элементов, которыми руководствуются при проектировании различных зданий. По мере развития техники и накопления опыта типовые элементы совершенствуются, создаются новые, более эффективные, поэтому каталоги время от времени обновляются. Унификация размеров и конструктивных схем зданий Чтобы одни и те же типовые элементы можно было широко применять в различных зданиях, расстояния между колоннами в плане (сетка колонн) и высоты этажей унифицируют, т. е. приводят к ограниченному числу размеров.
Основой унификации размеров служит единая модульная система, предусматривающая градацию размеров иа базе модуля 100 мм или укрупненного модуля, кратного 100 мм.
Для одноэтажных промышленных зданий с мостовыми кранами расстояние между разбивочными осями в продольном направлении (шаг колонн) принято равным 6 или 12 м, а между разбивочными осями в поперечном направлении это расстояние (пролеты здания) принято кратным укрупненному модулю 6 м, т. е. 18, 24, 30 м и т. д. Высота от пола до низа основной несущей конструкции принята кратной модулю 1,2 м, например 10,8; 12 м и т. д. до 18 м.
Для многоэтажных промышленных зданий принята унифицированная сетка колонн 9x6, 12X6 м под временные нормативные нагрузки на перекрытия 5, 10 и 15 кН/м2 и сетка колонн под временные нормативные нагрузки 10, 15, 20 кН/м2; высоты этажей принимают кратными укрупненному модулю 1,2 м, например 3,6; 4,8; 6 м.
В гражданских зданиях укрупненным модулем для сетки осей принят размер 600 мм. Расстояние между осями сетки в продольном и поперечном направлениях назначают от 3 до 6,6 м. Высоты этажей, кратные модулю 300 мм,— от 3 до 4,8 м. На основе унифицированных размеров оказалось возможным все многообразие объемно-планировочных решений зданий свести к ограниченному числу унифицированных конструктивных схем, т. е. схем, где решение каркаса здания и его узлов однотипно. Все это позволило создать типовые проекты зданий для массового применения в строительстве.
Чтобы взаимоувязать размеры типовых элементов зданий, предусмотрены три категории размеров: номинальные, конструктивные и натурные. Номинальные размеры элемента — расстояния между осями здания в плане. Например, плита покрытия при шаге колонн 6 м имеет номинальную длину 6 м. Конструктивные размеры элемента отличаются от номинальных на величину швов и зазоров. Например, плита покрытия при номинальной длине 6000 мм имеет конструктивный размер 5970 мм, т. е. зазор составляет 30 мм. Величина зазоров зависит от условий и методов монтажа и должна допускать удобную сборку элементов и в необходимых случаях заливку швов раствором. В последнем случае величина зазора принимается не менее 30 мм. Натурные размеры элемента — фактические размеры, которые в зависимости от точности изготовления могут отличаться от конструктивных размеров на некоторую величину, называемую допуском (3—10 мм). Конструктивные размеры элементов назначают с учетом необходимых зазоров в швах и стыках, а также с учетом нормированных допусков. Укрупнение элементов Сборные железобетонные элементы конструкций зданий в процессе проектирования необходимо укрупнять. При монтаже зданий из укрупненных элементов сокращается число монтажных операций по подъему и укладке элементов, уменьшается число стыковых сопряжений, выполняемых во время монтажа, повышается степень заводской готовности элементов, а следовательно, уменьшается объем отделочных работ на площадке. Так, для гражданских зданий рационально панели перекрытий выполнять размером на комнату, панели стен высотой в этаж и шириной на комнату. Для покрытий промышленных зданий удобно применять крупнопанельные плиты, укладываемые непосредственно по фермам (беспрогонное покрытие). Возможности укрупнения элементов определяются их предельной массой и предельными габаритными размерами, устанавливаемыми исходя из грузоподъемности монтажных механизмов, транспортных средств, а также способов перевозки.
В целях лучшего использования монтажных кранов элементы здания должны быть по возможности равной массы, приближающейся к максимальной грузоподъемности монтажного крана.
Длина сборных элементов по условиям перевозки автомобильным или железнодорожным транспортом может быть до 24 м. Поскольку укрупнение элементов в некоторых случаях ограничивается предельно допустимой их массой, целесообразно создавать конструкции с облегченной формой сечений, тонкостенные, пустотные и т. п., применять бетон высокого класса и высокопрочную арматуру. Рационально проектировать конструкции из бетонов на легких заполнителях. Технологичность сборных элементов
Технологичными называют элементы, конструкция которых допускает их массовое изготовление на заводе или на полигоне с использованием высокопроизводительных машин и механизмов без трудоемких ручных операций. Конструкция технологичных элементов должна быть увязана с технологией их изготовления. Например, членение каркаса многоэтажного здания на отдельные элементы возможно разрезкой ригелей в местах, где изгибающие моменты имеют наименьшее значение. Габаритная ширина изделия включает консоли, вылет которых в несколько раз превышает размер колонны. В условиях конвейерного и поточно-агрегатного способа производства колонна со значительными консольными выступами нетехнологична, так как по ширине вагонетки конвейера может разместиться лишь одна колонна, в связи с чем резко уменьшается выпуск готовой продукции.
Членение каркаса многоэтажного здания на прямолинейные элементы делает их более технологичными для конвейерного и поточно-агрегатного способа производства. Хотя в этом случае в местах разрезов изгибающие моменты и поперечные силы резко возрастают и это требует большого внимания к качеству работ на монтаже, все же такое решение позволяет значительной повысить производительность заводов при изготовлении элементов каркаса н поэтому принято как типовое. В условиях стендового способа производства и на построечных полигонах колонны с выступающими консолями могут быть изготовлены сравнительно просто; в этом случае они будут технологичными.
Не менее важно для технологичности изготовления элементов соответствующее конструирование арматуры и стальных закладных деталей.
Сборные элементы должны быть технологичными также и при монтаже: их конструкция должна допускать удобную установку, закрепление в проектном положении и быстрое освобождение крюка монтажного крана. Членение конструкции на сборные элементы в ряде случаев обусловлено требованиями технологичности монтажа. Например, колонны каркаса многоэтажного здания для удобства монтажа соединяют на высоте 800—1000 мм от уровня перекрытия.
Конструкции стыков сборных элементов проектируют с учетом обспечения их прочности, а также требований технологичности монтажа. Объем монтажной сварки должен быть сравнительно небольшим, работы по замоноличиванию стыков — сравнительно не трудоемкими.
В элементах сборных железобетонных конструкций должны быть предусмотрены устройства для их подъема при транспортировании и монтаже: монтажные петлн, специальные строповочные отверстия и т. п. Для устройства монтажных петель должна применяться только горячекатаная арматурная сталь с площадкой текучести класса А-II марки 10ГТ и класса A-I. Прочность сечения петель проверяют расчетом. Расчетные схемы сборных элементов в процессе транспортирования и монтажа Элементы сборных конструкций при подъеме, транспортировании и монтаже испытывают нагрузку от веса, при этом расчетные схемы элементов могут существенно отличаться от расчетных схем в проектном положении. Сечение элементов, запроектированное на восприятие усилий в проектном положении, в процессе транспортирования и монтажа в ряде случаев может оказаться недостаточным. В связи с этим необходимо расчетные схемы элементов назначать так, чтобы усилия, развивающиеся при транспортировании и монтаже, были возможно меньше. Для этого надо устанавливать соответствующее расположение монтажных петель, строповочных отверстий (которые должны быть указаны на рабочих чертежах элементов).
Нормами допускается снижать коэффициент динамичности и принимать не менее чем 1,25, если это подтверждено опытом применения таких конструкций.
Наиболее характерным примером элемента сборной конструкции, расчетная схема которого при транспортировании и монтаже существенно отличается от расчетной схемы в проектном положении, будет колонна. В этом примере колонна испытывате изгиб вместо сжатия, меняются положение сжатой зоны сечения, положение сжатой и растянутой арматуры. Чтобы получить более благоприятную расчетную схему колонны на монтаже, целесообразно переместить монтажные петли от концов к середине, тогда при подъеме колонна работает как однопролетная балка с коносолями и изгибающие моменты, возникающие на монтаже, уменьшаются.
Для примера выбора рациональной расчетной схемы двухпролетной рамы на монтаже проанализируем возможное расположение мест захвата при ее подъеме. Применяя траверсу, можно захватить раму за ее узлы, и тогда знаки изгибающих моментов в ригелях сохраняются такими же, как и в рабочем положении, а потому прочность рамы в процессе монтажа будет обеспечена без дополнительного армирования. Если же захватить раму без траверсы непосредственно в двух точках за ригели, то характер эпюры моментов изменяется: в середине пролета ригеля возникнут отрицательные моменты и потребуется дополнительное армирование, не используемое в проектном положении.
Элементы с сечениями значительной высоты и относительно малой ширины (высокие балки, фермы, стеновые панели и т. п.) транспортируют обычно в рабочем положении — на ребро, поскольку их несущая способность в горизонтальном положении мала и перечисленные меры по изменению расчетной схемы на монтаже не эффективны.
При проектировании железобетонных конструкций необходимо предусматривать конструктивные меры, чтобы обеспечить устойчивость отдельных элементов и всего здания в процессе монтажа, а также и другие требования охраны труда. При проектировании сборных железобетонных конструкций необходимо помимо класса бетона устанавливать отпускную прочность элементов заводского изготовления, т. е. кубиковую прочность бетона, при которой допускается транспортирование и монтаж элементов. Стыки и концевые участки элементов сборных конструкций Сборные конструкции зданий, смонтированные из отдельных элементов, совместно работают под нагрузкой благодаря стыкам и соединениям, обеспечивающим их надежную связь. Стыки и соединения сборных конструкций можно классифицировать по функциональному признаку (в зависимости от назначения соединяемых элементов) и по расчетно- конструктивному (в зависимости от вида усилий, действующих на них).
По функциональному признаку различают стыки колонн с фундаментами, колонн друг с другом, ригелей с колоннами, узлы опирания подкрановых балок, ферм, балок покрытий на колонны, узлы опирания панелей на ригели и т. п.
По расчетно-конструктивному признаку различают стыки, испытывающие сжатие, например стыки колонны; стыки, испытывающие растяжение, например стыки растянутого пояса фермы; стыки, работающие на изгиб с поперечной силой, например в соединении ригеля с колонной, и т. п.
В стыках усилия от одного элемента к другому передаются через соединяемую сваркой рабочую арматуру металлические закладные детали, бетон замоноличивания. Правильно запроектированный стык под действием расчетных нагрузок должен обладать прочностью и жесткостью, неизменяемостью взаимного положения соединяемых элементов и, кроме того, должен быть технологичным по изготовлению элементов на заводе и по монтажу на площадке. Конструкции стыков и соединений элементов должны обеспечивать быстрое й устойчивое закрепление в рабочем положении всех монтируемых элементов с помощью несложных устройств (кондукторов и т. п.) без применения специальных, строповочных приспособлений. В то же время конструкция стыков и соединений должна обеспечивать надежную передачу монтажных усилий. Это относится в первую очередь к стыкам колонн, на которые в процессе монтажа передаются нагрузки от веса колонн и от вышележащих элементов конструкции.
Размеры зазоров между соединяемыми элементами назначают возможно меньшими. Их величину обычно определяют доступностью сварки выпусков арматуры, удобством укладки в полости стыка бетонной смеси из условия погашения допусков на изготовление и монтаж; она может составлять 50—100 мм и более. При заливке швов раствором, особенно под давлением, зазор может быть минимальным, но не менее 20 мм.
Стальные закладные детали для предотвращения коррозии и обеспечения необходимой огнестойкости элементов покрывают защитным слоем цементного раствора по металлической сетке. С этой целью стальные закладные детали при конструировании втапливают так, чтобы после нанесения защитного слоя на поверхности элементов не было местных выступов. Там, где это выполнить трудно, предусматривают специальные защитные покрытия. Размеры стальных закладных деталей должны быть минимальными и назначаться из условия размещения сварных швов необходимой длины.
Концевые участки сжатых соединяемых элементов (например, концы сборных колонн) усиливают поперечными сетками косвенного армирования. При соединении с обрывом продольной рабочей арматуры в зоне стыка усиление поперечными сетками производят по расчёту. Сетки устанавливают у торца элемента (не менее 4 шт.) на длине не менее 10d стержней периодического профиля, при этом шаг сеток s должен быть не менее 60 мм, не более 7з размера меньшей стороны сечения и не более 150 мм (рис. Х.9). Размер ячеек сетки должен быть не менее 45 мм, не более меньшей стороны сечения и не более 100 мм.
У концевых участков сборных предварительно напряженных элементов необходимо предусматривать местное усиление против образования продольных раскалывающих трещин при отпуске натяжения арматуры. Для этого устанавливают дополнительную поперечную напрягаемую или ненапрягаемую арматуру.
Дополнительную поперечную ненапрягаемую арматуру устанавливают на всю высоту элемента и приваривают к опорной закладной детали. Кроме того, у торцов предварительно напряженных Элементов устанавливают дополнительную косвенную арматуру с коэффициентом армирования =2% на длине не менее 0,61Р и не менее 20 см при продольной арматуре, не имеющей анкеров.
В стыках и соединениях сборных железобетонных элементов стальные закладные детали часто проектируют в виде пластинок и приваренных к ним втавр анкеров, испытывающих действие усилий М, N, Q. Для расчета анкеров изгибающий момент заменяют парой сил с плечом z и усилия определяют с учетом опытных коэффициентов.
Чтобы усилить сопротивление сдвигу и отрыву, к пластинке приваривают нахлесточные анкеры и поперечные ребра.
Стыки растянутых элементов выполняют сваркой выпусков арматуры или стальных закладных деталей, а в предварительно напряженных конструкциях — пропуском через каналы или пазы элементов пучков, канатов или стержневой арматуры с последующим натяжением. Сварные стыки растянутых элементов конструируют так, чтобы при передаче усилий не происходило разгибания закладных деталей, накладок или выколов бетона.
Для передачи сдвигающих усилий на поверхности соединяемых элементов устраивают пазы, которые после замоноличивания образуют бетонные шпонки. Применение бетонных шпонок целесообразно в бесконсольиых стыках ригелей с колоннами, где их располагают так, чтобы бетон шпонок работал в наклонном сечении на сжатие, в стыках плитных конструкций, для повышения жесткости панельных перекрытий в своей плоскости и др.
В стыках и соединениях сцепление бетона сборных элементов с бетоном, укладываемым на монтаже (сцепление старого и нового бетона), при соблюдении технологических правил производства работ (очистка бетонных поверхностей, увлажнение их и т. п.), как показывают опыты, оказывается достаточно прочным. Для обетонирования стыков и соединений рекомендуется применять инвентарную опалубку, подачу бетонной смеси или раствора в полости стыков под давлением, электропрогрев для ускорения твердения, целесообразный даже при положительных температурах.
В стыках сварка основных рабочих швов выполняется в нижнем и вертикальном положении. При наложении сварных швов в соединяемой арматуре и стальных закладных деталях развивается местная высокая температура и, следовательно, нагревается окружающий бетон. Экспериментальные исследования показали, что под действием нагрева механическая прочность бетона несколько снижается, однако это ослабление носит местный характер и не отражается на несущей способности стыка в целом. Начальные сварочные напряжения (растягивающие в арматуре, сжимающие в бетоне) при соблюдении технологической последовательности сварки выпусков арматуры также не отражаются на несущей способности стыка. Технико-экономическая оценка железобетонных конструкций Для технико-экономической оценки отдельных элементов и конструкций в целом при проектировании служат следующие показатели: расход арматуры, бетона; трудоемкость изготовления и монтажа, чел.-дн.; стоимость, руб. Расчетной единицей измерения служит одна конструкция. Кроме того, показатели рассчитывают на одну единицу измерения — на 1 м3 или на 1 м2, или на 1 м длины и т. д. Основным экономическим показателем железобетонных конструкций является стоимость, которая слагается из стоимости материала и работ по изготовлению и монтажу конструкции, стоимости энергии, топлива и материалов на технологические нужды, а также цеховых и общезаводских расходов, отражающих капиталовложения по организации производства и эксплуатационные расходы предприятия.
При проектировании зданий и сооружений чаще всего применяют вариантный метод сравнения стоимости железобетонных конструкций. Этим методом оценку экономичности железобетонных конструкций производят сопоставлением технико- экономических показателей нескольких вариантов конструктивных решений. Сравниваемые варианты конструктивных решений отвечают одной и той же программе, одним и тем же требованиям, но отличаются конструктивной схемой, иногда геометрическими размерами, формой сечения элементов, способами армирования и т. п. Показатели определяются на основе чертежей конструкций, разработанных на той стадии проектирования, на которой производится сравнение вариантов. Наиболее достоверные показатели можно получить на основании рабочих чертежей конструкций.
Вопросы экономики железобетонных конструкций следует решать совместно с вопросами прочности на протяжении всего процесса проектирования: при выборе объемно-планировочной и конструктивной схемы здания; членении конструкции на сборные элементы и выборе формы и размеров сечения элементов; назначении класса бетона, класса стальной арматуры; установлении способов армирования и т. д.
Классификация плоских перекрытий
Железобетонные плоские перекрытия — наиболее распространенные конструкции, применяемые в строительстве промышленных и гражданских зданий и сооружений. Их широкому применению в строительстве способствуют высокая индустриальность, экономичность, жесткость, огнестойкость и долговечность. По конструктивной схеме железобетонные перекрытия могут быть разделены на две основные группы: балочные и безбалочные. Балочными называют перекрытия, в которых балки, расположенные в одном направлении или в двух направлениях, работают совместно с опирающимися на них плитами перекрытий. В безбалочных перекрытиях плита опирается непосредственно на колонны с уширениями, называемыми капителями. Те и другие перекрытия могут быть сборными, монолитными и сборно-монолитными. Конструктивные схемы перекрытий при сборном и монолитном выполнении различны, поэтому классификация перекрытий ведется по конструктивным признакам: балочные сборные; ребристые монолитные с балочными плитами; ребристые монолитные с плитами, опертыми по контуру; балочные сборно-монолитные; безбалочные сборные; безбалочные монолитные; безбалочные сборно-монолитные. Плиты в составе конструктивных элементов перекрытия в зависимости от отношения сторон опорного контура могут быть: а) при отношении сторон — балочными, работающими на изгиб в направлении меньшей стороны, при этом изгибающим моментом в направлении большей стороны ввиду его небольшой величины пренебрегают; б) при отношении сторон — опертыми по контуру , работающими на изгиб в двух направлениях, с перекрестной рабочей арматурой.
В строительстве, как правило, применяют сборные перекрытия, отличающиеся высокой индустриальностью. Монолитные перекрытия применяют редко, главным образом в зданиях, возводимых по индивидуальным (нетиповым) проектам.
Тип конструкции перекрытия выбирают в каждом случае по экономическим соображениям в зависимости от назначения здания, величины и характера действующих нагрузок, местных условий и др. Классификация плоских перекрытий Железобетонные плоские перекрытия — наиболее распространенные конструкции, применяемые в строительстве промышленных и гражданских зданий и сооружений. Их широкому применению в строительстве способствуют высокая индустриальность, экономичность, жесткость, огнестойкость и долговечность. По конструктивной схеме железобетонные перекрытия могут быть разделены на две основные группы: балочные и безбалочные. Балочными называют перекрытия, в которых балки, расположенные в одном направлении или в двух направлениях, работают совместно с опирающимися на них плитами перекрытий. В безбалочных перекрытиях плита опирается непосредственно на колонны с уширениями, называемыми капителями. Те и другие перекрытия могут быть сборными, монолитными и сборно-монолитными. Конструктивные схемы перекрытий при сборном и монолитном выполнении различны, поэтому классификация перекрытий ведется по конструктивным признакам: балочные сборные; ребристые монолитные с балочными плитами; ребристые монолитные с плитами, опертыми по контуру; балочные сборно-монолитные; безбалочные сборные; безбалочные монолитные; безбалочные сборно-монолитные. Плиты в составе конструктивных элементов перекрытия в зависимости от отношения сторон опорного контура могут быть: а) при отношении сторон — балочными, работающими на изгиб в направлении меньшей стороны, при этом изгибающим моментом в направлении большей стороны ввиду его небольшой величины пренебрегают; б) при отношении сторон — опертыми по контуру , работающими на изгиб в двух направлениях, с перекрестной рабочей арматурой.
В строительстве, как правило, применяют сборные перекрытия, отличающиеся высокой индустриальностью. Монолитные перекрытия применяют редко, главным образом в зданиях, возводимых по индивидуальным (нетиповым) проектам.
Тип конструкции перекрытия выбирают в каждом случае по экономическим соображениям в зависимости от назначения здания, величины и характера действующих нагрузок, местных условий и др. Компоновка конструктивной схемы перекрытия В состав конструкции балочного панельного сборного перекрытия входят плиты и поддерживающие их балки, называемые ригелями, или главными балками. Ригели опираются на колонны и стены; направление ригелей может быть продольное (вдоль здания) или поперечное. Ригели вместе с колоннами образуют рамы.
В поперечном направлении перекрытие может иметь два-три пролета (для гражданских зданий) и пять-шесть пролетов для промышленных зданий. Размеры пролета ригелей промышленных зданий определяются общей компоновкой (разработкой) конструктивной схемы перекрытия, нагрузкой от технологического оборудования и могут составлять 6; 9 и 12 м при продольном шаге колонн 6 м. Размеры пролета ригелей гражданских зданий зависят от сетки опор, которая может быть в пределах 3,0 — 6,6 м с градацией через 0,6 м.
Компоновка конструктивной схемы перекрытия заключается в выборе направления ригелей, установлении размеров пролета и шага ригелей, типа и размеров плит перекрытий; при этом учитывают:
1) величину временной нагрузки, назначение здания, архитектурно-планировочное решение;
2) общую компоновку конструкции всего здания. В зданиях, где пространственная жесткость в поперечном направлении создается рамами с жесткими узлами, ригели располагают в поперечном направлении, а панели — в продольном. В жилых и общественных зданиях ригели могут иметь продольное направление, а плиты— поперечное. В каждом случае выбирается соответствующая сетка колонн;
3) технико-экономические показатели конструкции перекрытия. Расход железобетона на перекрытие должен быть минимальным, а масса элементов и их габариты должны быть возможно более крупными в зависимости от грузоподъемности монтажных кранов и транспортных средств.
При проектировании разрабатывают несколько вариантов конструктивных схем перекрытия и на основании сравнения выбирают наиболее экономичную.
Общий расход бетона и стали на устройство железобетонного перекрытия складывается из соответствующего расхода этих материалов на плиты, ригели и колонны. Наибольший расход железобетона — около 65 % общего количества — приходится на плиты. Поэтому экономичное решение конструкции плит приобретает важнейшее значение. Расчет плиты, второстепенных и главных балок Расчетный пролет плиты принимают равным расстоянию в свету между второстепенными балками /д и при описании на наружные стены.
Условную нагрузку вводят в расчет для того, чтобы определить действительные отрицательные моменты в пролете второстепенной балки. Главная балка создает дополнительные закрепления, препятствующие свободному повороту опор второстепенных балок, и этим балки уменьшает влияние временной нагрузки в загруженных пролетах на незагруженные.
При подборе сечений в первую очередь уточняют размер поперечного сечения второстепенной балки по опорному моменту на первой промежуточной опоре. Поскольку расчет ведется по выравненным моментам, принимают На опоре действует отрицательный момент, плита оказывается в растянутой зоне и расчет ведут как для прямоугольного сечения.
Установив окончательно унифицированные размеры сечения, подбирают рабочую арматуру в четырех расчетных нормальных сечениях: в первом и среднем пролетах — как для таврового сечения, на первой промежуточной и средней опорах — как для прямоугольного сечения. На действие отрицательного момента в среднем пролете расчет ведут как для прямоугольного сечения.
Расчет поперечных стержней выполняют для трех наклонных сечений: у первой промежуточной опоры слева и справа и у крайней свободной опоры.
Все изложенное о расчете ригеля сборного балочного перекрытия полностью относится и к расчету главной балки монолитного ребристого перекрытия.
На главную балку передается сосредоточенная нагрузка от опорного давления второстепенных балок (которое только при двухпролетных второстепенных балках определяют с учетом неразрезности). Кроме того, учитывают собственный вес главной балки.
В местах пересечения второстепенной и главной балок над колонной в верхней зоне пересекается верхняя арматура трех элементов: плиты, второстепенной балки и главной балки. Поэтому на опоре главной балки в зависимости от числа рядов арматуры принимают а=6... 9 см.
Особенностью подбора сечений главной балки по изгибающим моментам является то, что на действие положительного момента в пролете она работает как тавровая, а на действие отрицательного момента на опоре — как прямоугольная. Конструирование плиты, второстепенных и главных балок Многопролетные балочные плиты в соответствии с характером эпюры моментов армируют рулонными сетками с продольным расположением рабочей арматуры; рулон раскатывают по опалубке поперек второстепенных балок. Сетки перегибают на расстоянии 0,25 от оси опоры (в местах нулевых моментов) и укладывают на верхнюю арматуру каркасов второстепенных балок. В первом пролете на основную сетку плиты укладывают дополнительную, которую заводят за опоры на 0,25. Если нужна более сильная рабочая арматура — диаметром 6 мм и более — плиты армируют в пролете и на опоре раздельно рулонными сетками с поперечным расположением рабочей арматуры.
Второстепенные балки армируют в пролете плоскими каркасами (обычно двумя), которые перед установкой в опалубку объединяют в пространственный каркас приваркой горизонтальных поперечных стержней. Эти каркасы доходят до граней главных балок, где связываются понизу стыковыми стержнями. На опоpax второстепенные балки армируют двумя гнутыми сетками с продольными рабочими стержнями.
Места обрыва надопорных сеток устанавливают в coответствии с эпюрой отрицательных моментов. Отрицательные моменты в пролете, за местом обрыва сеток, воспринимаются верхней арматурой каркасов балки.
Главную балку армируют в пролете двумя или тремя плоскими каркасами, которые перед установкой в опалубку объединяют в пространственный каркас. Два плоских каркаса доводят до грани колонны, а третий (если он есть) обрывают в соответствии с эпюрой моментов. Возможен также обрыв в пролете части стержней каркасов. На опоре главную балку армируют самостоятельными каркасами, заводимыми сквозь арматурный каркас колонн. Места обрыва каркасов отдельных стержней устанавливают на эпюре арматуры. На главную балку нагрузка передается через сжатую зону на опоре второстепенной балки — в средней части высоты главной балки. Эта местная сосредоточенная нагрузка воспринимается подвесками: поперечной арматурой главной балки и дополнительными сетками в местах опирания второстепенных балок. Конструктивные схемы перекрытий
В состав конструктивной схемы перекрытий входят; плиты, работающие на изгиб в двух направлениях, и поддерживающие их балки. Все элементы перекрытия монолитно связаны.
Размер сторон плиты в каждом направлении достигает 4—6 м; практически возможное отношение сторон = 1 — 1,5. Балки назначают одинаковой высоты и располагают по осям колонн в двух направлениях. Перекрытия без промежуточных колонн и с, малыми размерами плит (менее 2 м) называют кессонными.
Перекрытия с плитами, опертыми по контуру, применяют главным образом по архитектурным соображениям, например для перекрытия вестибюля, зала и т. п. По расходу арматуры и бетона эти перекрытия менее экономичны, чем перекрытия с балочными плитами при той сетке колонн.
Опыты показали, что предельная разрушающая нагрузка при прямоугольном и диагональном расположении арматуры одинакова . Однако прямоугольные сетки проще в изготовлении, поэтому их применяют для армирования плит.
На нижней поверхности плиты трещины направлены по биссектрисам углов, на верхней поверхности при заделке плиты по контуру трещины идут параллельно сторонам и имеют закругления в углах, перпендикулярные диагоналям.
Установить характер разрушения железобетонных плит, опертых по контуру, важно для расчета их несущей способности и конструирования арматуры. Расчет и конструирование плит, опертых по контуру Плиты, опертые по контуру, армируют плоскими сварными сетками с рабочей арматурой в обоих направлениях. Поскольку изгибающие моменты в пролете, приближаясь к опоре, уменьшаются, количество стержней в приопорных полосах уменьшают. С этой целью в пролете по низу плиты укладывают две сетки разных размеров, обычно с одинаковой площадью сечения арматуры. Меньшую сетку не доводят до опоры на расстояние h. Сетки вкладывают в пролете в два слоя во взаимно перпендикулярном направлении. Монтажные стержни сеток не стыкуются. Надопорная арматура неразрезных многопролетных щлит, опертых по контуру, при плоских сетках в пролете конструируется аналогично надопорной арматуре балочных плит. Армирование может осуществляться также с применением типовых рулонных сеток с продольной рабочей арматурой, раскатываемых во взаимно перпендикулярном направлении. В первом пролете многопролетных плит изгибающий момент больше, чем в средних, поэтому поверх основных сеток укладывают дополнительные рулонные сетки или дополнительные плоские сетки.
Плиты, опертые по контуру, рассчитывают кинематическим способом метода предельного равновесия. Плита в предельном равновесии рассматривается как система звеньев, соединенных друг с другом по линиям излома пластическими шарнирами, возникающими в пролете приблизительно по биссектрисам углов и на опоpax вдоль балок. Изгибающие моменты плиты М зависят от площади арматуры, пересеченной пластическим шарниром, и определяются на 1 м ширины плиты по формуле. При различных способах армирования плит, опертых по контуру, составляют уравнение работ внешних и внутренних сил на перемещениях в предельном равновесии и определяют изгибающие моменты от равномерно распределенной нагрузки.
Расчетные пролеты принимают равными расстоянию (в свету) между балками или расстоянию от оси опоры на стене до грани балки (при свободном опирании).
В плитах, окаймленных по всему контуру монолитно-связанными с ним балками, в предельном равновесии возникают распоры, повышающие их несущую способность.
Сечение арматуры плит подбирают как для прямоугольных сечений. Рабочую арматуру в направлении меньшего пролета располагают ниже арматуры, идущей в направлении большего пролета. В соответствии с таким расположением арматуры рабочая высоте сечения плиты для каждого направления различна и будет отличаться на размер диаметра арматуры. Расчет и конструирование балок Нагрузка от плиты на балки передается по грузовым площадям в виде треугольников или трапеций. Для определения этой нагрузки проводят биссектрисы углов панели до их пересечения. Произведение нагрузки на соответствующую грузовую площадь даст полную нагрузку на пролет балки, загружённой с двух сторон панелями.
Кроме того, следует учесть равномерно распределенную нагрузку от собственного веса балки и части перекрытия с временной нагрузкой на ней, определяемой по грузовой полосе, равной ширине балки.
Расчетные пролеты балок принимают равными расстоянию в свету между колоннами или расстоянию от оси опоры на стене (при свободном опирании) до грани первой колонны. Для упрощения принимают расчетный пролет балки равным пролету плиты в свету между ребрами (с некоторой погрешностью в сторону увеличения расчетного пролета балки).
Порядок подбора сечения и принцип армирования балки такие же, как главной балки ребристого перекрытия с балочными плитами. На опорах балки армиуют седловидными каркасами, что позволяет осуществить независимое армирование в пересечениях на колоннах. Сущность сборно-монолитной конструкции Сборно-монолитная конструкция перекрытия состоит из сборных элементов и монолитных частей, бетонируемых непосредственно на площадке. Затвердевший бетон этих монолитных участков связывает конструкцию в единую совместно работающую систему.
Сборные элементы перекрытия служат остовом для монолитного бетона и в них размещена основная, чаще всего напрягаемая арматура. Дополнительную арматуру при монтаже можно укладывать на остов из сборных элементов. Сборные элементы изготовляют из бетона относительно высоких классов, бетон же монолитных участков может быть класса В15.
Работа сборно-монолитной конструкции характеризуется тем, что деформации монолитного бетона следуют за деформациями бетона сборных элементов, и трещины в монолитном бетоне не могут развиваться до тех пор, пока они не появятся в предварительно напряженном бетоне сборных элементов. Опыты показали, что совместная работа сборных предварительно напряженных элементов и монолитных частей возможна и при бетонах на пористых заполнителях.
Следует учитывать, что применение сборно-монолитной конструкции требует организации на площадке двух процессов производства работ с различной технологией и применением различных механизмов: монтаж сборных элементов и бетонирование монолитных участков. Поэтому их применение требует соответствующего обоснования. Конструкции сборно-монолитных перекрытий При пролетах до 9 м возможны перекрытия с предварительно напряженными элементами, которые имеют вид железобетонной доски и служат остовом растянутой балки, снабженной арматурой. На эти элементы устанавливают корытной формы армированные элементы, а по ним, как по опалубной форме, укладывают монолитный бетон. В неразрезных перекрытиях писанного типа над опорами устанавливают дополнительную арматуру.
Конструкция сборно-монолитного перекрытия, в котором объем монолитного бетона составляет 30 % общего бетона в перекрытии, образована из сборных предварительно напряженных досок и панелей копытной формы.
Бетон замоноличивания укладывают в пазы, образованные между боковыми гранями смежных панелей. Нефазрезность главной и второстепенных балок достигается укладкой на монтаже опорной арматуры. Для лучшей связи между сборным и монолитным бетоном из железобетонной доски — днища главной балки — выпущены хомуты.
Сборно-монолитные ребристые перекрытия рассчитывают с учетом перераспределения моментов, что дает возможность уменьшить количество опорной арматуры, укладываемой на монтаже. Возможность выравнивания моментов для неразрезных сборно-монолитных элементов проверена специальными опытами. Безбалочные сборные перекрытия Безбалочное сборное перекрытие представляет собой систему сборных панелей, опертых непосредственно на капители колонн . Основное конструктивное назначение капителей в том, чтобы обеспечить жесткое сопряжение перекрытия с колоннами, уменьшить размер расчетных пролетов панелей и создать опору для панелей. Сетка колонн обычно квадратная размером 6Х6м. Преимущество безбалочных панельных перекрытий в сравнении с балочными — в лучшем использовании объема помещений из-за отсутствия выступающих ребер, облегчении устройства различных производственных проводок и коммуникаций. Благодаря меньшей конструктивной высоте безбалочного перекрытия уменьшается общая высота многоэтажного здания и сокращается расход стеновых материалов.
Для многоэтажных складов, холодильников, мясокомбинатов, а также для других производственных зданий большими временными нагрузками применяют преимущественно безбалочные панельные перекрытия. При нагрузках на перекрытия 10 кН/м2 и более балочные панельные перекрытия экономичнее балочных. Конструкция сборного безбалочного перекрытия состоит из трех основных элементов: капители, надколонной панели и пролетной панели. Капитель опирается на расширения колонны и воспринимает нагрузку от надколонных панелей, идущих в двух взаимно перпендикулярах направлениях и работающих как балки. Безбалочное сборное перекрытие работает подобно ребристому перекрытию с плитами, опертыми по контуру, в котором надколонные панели выполняют роль широких балок. Панели перекрытий выполняют ребристыми или пустотными, а капители — полыми илн сплошными. Колонны имеют поэтажную разрезку.
Экспериментальные исследования безбалочных перекрытий показали, что надколонные панели в поперечном направлении обладают небольшой деформативностью, и продольная рабочая арматура может в них располагаться по всему поперечному сечению равномерно.
Пролетный момент квадратной панели определяют с учетом частичного закрепления в контурных ребрах и с учетом податливости опорного контура. Опорные и пролетные моменты надколонных панелей определяют как для неразрезной балки с учетом перераспределения моментов.
Капители рассчитывают в обоих направлениях на нагрузку от опорных давлений и моментов надколонных плит. Расчетную арматуру укладывают по верху капители стенки капителей армируют конструктивно. Кроме того, капители рассчитывают на монтажную нагрузку как консоли.
Колонны каркаса рассчитывают на действие продольной сжимающей силы N от нагрузки на вышележащих этажах и на действие изгибающего момента М от односторонней временной нагрузки на перекрытии.


Версия для печати  Версия для печати


 


Энциклопедия по бетону Все о бетоне и его свойства Применение бетона в стройиндустрии Строительное оборудование Бетонные работы Все о кирпиче Все о цементе и его свойствах Нерудные материалы Сухие смеси Железобетонные иделия и конструкции Статьи о строительстве и стройиндустрии Строительные материалы Строительные материалы - часть 2 Снабжение Промышленноcть и оборудование Промышленноcть и оборудование - часть 2

Смотрите так же другие статьи
Влажность заполнителя При рассмотрении кажущегося удельного веса упоминалось, что в бетонной смеси объем, занятый заполнителем, включает суммарный объем всех зерен вместе со всеми их порами. Если требуется исключить отсос воды в заполнитель, то необходимо, чтобы поры были заполнены водой, т. е. зап... >>>
 
Набухание песка Присутствие влаги в заполнителе требует соответствующего корректирования расчетного состава бетона: расход воды в бетонной смеси следует уменьшить на количество свободной влаги в заполнителе, а расход заполнителя необходимо увеличить на аналогичное количество. Свободная влага в песк... >>>
 
Вредные примеси в заполнителе Вредные примеси, встречающиеся в заполнителе, можно разделить на следующие три группы: во-первых, загрязнения — примеси, которые препятствуют нормальному процессу гидратации цемента; во-вторых, примеси, образующие на поверхности зерен оболочки, препятствующие со... >>>
 
Производство жби Производство жби Производство жби представляет собой соединение арматуры и бетона. Бетон служит для защиты метала арматуры от коррозии и принимает на себя сжимающие напряжения, а арматура – растягивающие усилия. Так как метал хорошо работает на растяжение, а хрупкий бетон... >>>
 
Деревообрабатывающее оборудование, купленное сегодня, может уже завтра работать и приносить прибыль. Лесодобыча и деревообработка - одна из отраслей, эффективность бизнеса в которых более всего зависит от правильного выбора оборудования. Начинающий предприниматель или менеджер часто плутает в кат... >>>
 
Энергосберегающие люминесцентные светильники Согласно данным, в России из всей потребленной электроэнергии около 65% уходит на свет. Огромное количество денежных средств расходуется на освещение промышленных предприятий и производственных помещений. Очевидно, что заинтересованность фирм и учрежде... >>>
 
Римские кооперативы Гораций По имеющимся на сегодня сведениям можно составить достаточно определенно представление об организации труда римских строителей. В Римском государстве была целая сеть различных товариществ-организаций, так называемых коллегий. В эти коллегии римские граждане объединялись ... >>>
 
Сварка арматуры Для соединения стержней при изготовлении сеток и каркасов применяют электродуговую и контактную точечную и стыковую сварку. Вручную дуговую сварку крестовых соединений допускается вести в исключительных случаях — при сварке стержней больших диаметров и отсутствии оборудования... >>>
 
Сводчатые здания и сооружения Древнего Рима После завоевания Карфагена и покорения Греции Рим становвится самым могущественным и грозным государством Древнего мира. Одновременно растут потребности в строительстве храмов и дворцов. Лучше всего такому типу зданий отвечали здания сводчатого типа. Есть... >>>
 


© 2005-2024 г. http://vogean.com Все права защищены. Группа компаний "ВОГЕАН".
Сайт работает на системе управления сайтом General-CMS

Rambler's Top100 Яндекс цитирования џндекс.Њетрика