Оборудование для производства кирпича ООО ВОГЕАН Строительство заводов по производству кирпича
Основная деятельность нашего предприятия: строительство заводов, производство оборудования, технологических линий и станков
по производству: кирпича, блока, тротуарной плитки, бордюров и других строительных материалов (вибропрессования и гиперпрессования),
а так же силикатного кирпича (с автоклавной обработкой) и керамического кирпича (с обжигом).

Фото продукции









Методы оценки модуля упругости

В соответствии с современными взглядами упругое деформирование бетона обусловливается структурными особенностями этого многокомпонентного материала, состоящего из цементного камня и заполнителя. Цементный камень может рассматриваться в свою очередь как многофазная система, состоящая из гелево-кристаллической массы, капиллярных пор и частиц негидратированного цемента и т. д. Соотношение этих элементов структуры в бетоне и характеристика их упругих свойств в конечном счете определяют величину деформаций бетона при кратковременном статическом нагружении. Подробный обзор существующих методов оценки модуля упругости бетона с учетом упругих свойств составляющих содержится в работе Гансена. Установлено, что достаточно общее и строгое теоретическое решение для многокомпонентной модели бетона основано на рассмотрении двухфазной системы с частицами заполнителя сферической формы, равномерно распределенными в массе цементного камня. Гансен показал, что удовлетворительные результаты могут быть получены также и в том случае, если рассматривать бетон как систему, состоящую из цементного раствора и крупного заполнителя. Исходя из этой модели, получены известные выражения для модуля упругости бетона (формулы Гансена, Шефдевиля-Дантю и т. д.). Аналитическая форма каждого выражения зависит от того, постулируется ли наличие или отсутствие полного сцепления между раствором и крупным заполнителем. В реальных условиях существует частичное сцепление между ними. Формула, предложенная Гансеном с учетом этого положения, позволяет получить результаты, приемлемо совпадающие с экспериментальными данными и вычисленными по формуле. Изложенные представления о деформировании бетона под кратковременной нагрузкой следует рассматривать как теоретическую основу для оценки этого явления. Вместе с тем возможности их практического использования для прогноза деформативности бетона ограничены, поскольку требуется знать в каждом частном случае упругие характеристики компонентов бетона. В соответствии с выражением (V.4) существует некоторое предельное значение модуля упругости бетона Ет, которое не может быть превзойдено при любом значении прочности бетона Rx. Формула (V.4) положена в основу метода оценки модуля упругости бетона в нормах СНиП, Указаниях по проектированию железобетонных мостов СН 365-67и других отечественных нормативных документах. В частности, она использована во французских нормах пректирования, а также в рекомендациях Европейского комитета по бетону, разработанных для создания международных норм проектирования железобетонных конструкций. В отличие от (V.4) формула (V.5) предполагает неограниченное возрастание модуля упругости бетона с ростом его прочности. На основании опытных данных предложены различные варианты выражений (V.4) и (V. 5), которые отличаются численными значениями коэффициентов EmtS, си v (табл. 5). Наибольшее распространение получили формулы Графа и Роша, которые сейчас широко используются при оценке упругих свойств тяжелого бетона. Как следует из табл. 5, методы прогнозирования упругой деформативности бетона основываются на уточнении коэффициентов в формулах (V.4) и (V.5) эмпирическим путем вне всякой связи с изложенными выше теоретическими представлениями. В ряде работ исследовалось влияние содержания заполнителя в бетоне, его вида и гранулометрического состава, наличия в заполнителе мелких фракций, условий твердения бетона на величину коэффициентов Ет, S, с и v. Однако применить полученные закономерности для описания одновременно большого количества экспериментальных данных не удается. Как видно из табл. 5, большинство предлагаемых коэффициентов получено для бетонов низкой или средней прочности. В какой мере эти коэффициенты пригодны для оценки модуля упругости бетонов высоких прочностей, судить трудно, поскольку экстраполяция большинства зависимостей в область прочностей порядка 1000 кГ!см2 приводит к разным результатам. Если сопоставить, к примеру, значения модулей упругости по зависимостям, принятым СНиП и рекомендациями ЕКБ (рис. 34), то наибольшие расхождения между ними (до 35%) наблюдаются именно в области высоких прочностей. Некоторые закономерности, обнаруживаемые экспериментально, вообще не поддаются объяснению на основе зависимостей (V.4) и (V.5). При измерении упругих деформаций бетонов разной прочности фиксируется в ряде случаев не возрастание, как следует из формул (V.4) и (V.5), а падение модуля с ростом прочности бетона. Это подтверждается результатами опытов Уокера Фройденталя и Ролла, а также Ричарта, Брандцига и Брауна и др. (рис. 35). Противоречия и расхождения в оценках модуля упругости бетона следует отнести, несомненно, за счет того, что существующие эмпирические зависимости не отражают влияния на его величину всех важнейших факторов. На это обстоятельство обращалось внимание в ряде работ. Таким образом, в обосновании и проверке нуждается прежде всего характер взаимосвязи упругих и прочностных свойств тяжелого бетона во всем возможном диапазоне их изменения. Это должно быть сделано путем применения имеющихся теоретических решений и статистической обработки достаточно обширной выборки опытных результатов. Только на этой основе могут быть вскрыты причины указанных противоречий и сделаны правильные выводы об упругих свойствах высокопрочных бетонов. В последние годы исследования в данном направлении проводились, в частности, в ЦНИИ. Рассмотрим основные результаты этих исследований применительно к современным тяжелым бетонам (включая высокопрочные), изготовляемым на портландцементах и заполнителях из плотных прочных пород.


Версия для печати  Версия для печати


 


Энциклопедия по бетону Все о бетоне и его свойства Применение бетона в стройиндустрии Строительное оборудование Бетонные работы Все о кирпиче Все о цементе и его свойствах Нерудные материалы Сухие смеси Железобетонные иделия и конструкции Статьи о строительстве и стройиндустрии Строительные материалы Строительные материалы - часть 2 Снабжение Промышленноcть и оборудование Промышленноcть и оборудование - часть 2

Смотрите так же другие статьи
Деревянные окна: от производства до монтажа в Вашем доме Всем известно, что при нашей экологии очень важно, чтобы вокруг нас были натуральные материалы. В связи с этим лучше всего ставить деревянные окна, которые обладают всеми достоинствами окон из ПВХ. Помимо того, тот факт, что они изготовлены... >>>
 
"Зеленые кровли": прошлое и настоящее Во многих странах в течение сотен (если не тысяч) лет «зеленые кровли» были стандартной конструкцией, главным образом благодаря великолепным теплоизоляционным качествам плодородного слоя и дерна. В холодном климате Исландии и Скандинавии... >>>
 
Как отремонтировать окна ПВХ? С годами пластиковые окна могут утратить свои полезные качества. Самые частые проблемы, с которыми сталкиваются владельцы окон ПВХ – это сквозняки (из-за образовавшихся щелей в раме), грибок на различных частях окна, промерзание стекол, износившаяся фурнитура. ... >>>
 
Современная реальность прогрессирующего общества и ее влияние на изготовление средств производства. Для предприятий строительной промышленности наша производственная компания специализируется на разработках и продаже промышленных линий по изготовлению материалов. Если кратко охарактеризовать наше м... >>>
 
Революционные наработки и создание производственных мощностей в период сегодняшнего экономического роста. Необходимые комплектующие изделия для сооружающих организаций могут быть изготовлены на рассчитанных и сделанных нами производственных конвейерах. Задачей первой величины, наша компания приним... >>>
 
Изменения, происходящие в производстве оснащения при подъеме экономических показателей страны. Требуемые составляющие изделия для строительных организаций могут быть изготовлены на разрабатываемых и сделанных нами производственных конвейерах. Задачей первой величины, мы считает возможность предлож... >>>
 
Оборудование для силикатного кирпича (с автоклавной обработкой) ВАРИАНТ 2 СПЕЦИФИКАЦИЯ № 1 Оборудования по изготовлению силикатного кирпича: 15 млн.шт./год (29’296 куб.м/год) 350 рабочих дней/ год № п/п ... >>>
 
Оборудование для силикатного кирпича (с автоклавной обработкой) ВАРИАНТ 3 СПЕЦИФИКАЦИЯ № 1 Оборудования по изготовлению силикатного кирпича: 30 млн.шт./год (58’592 куб.м/год) 350 рабочих дней/ год № п/п ... >>>
 
Оборудование для силикатного кирпича (с автоклавной обработкой) ВАРИАНТ 4 СПЕЦИФИКАЦИЯ № 1 Оборудования по изготовлению силикатного кирпича: 60 млн.шт./год (117’184 куб.м/год) 350 рабочих дней/ год № п/п ... >>>
 


© 2005-2018 г. http://vogean.com Все права защищены. Группа компаний "ВОГЕАН".
Сайт работает на системе управления сайтом General-CMS

Rambler's Top100 Яндекс цитирования џндекс.Њетрика