Оборудование для производства кирпича ООО ВОГЕАН Строительство заводов по производству кирпича
Основная деятельность нашего предприятия: строительство заводов, производство оборудования, технологических линий и станков
по производству: кирпича, блока, тротуарной плитки, бордюров и других строительных материалов (вибропрессования и гиперпрессования),
а так же силикатного кирпича (с автоклавной обработкой) и керамического кирпича (с обжигом).

Фото продукции









Учет температурно-влажностных условий твердения в зависимостях прочности бетона от В/Ц

Большинство предложенных формул, связывающих прочность бетона и водоцементное или цементно-водное отношение разработано применительно к нормальным температурно-влажностным условиям твердения материала в течение 28 сут. При некоторых усредненных характеристиках исходных материалов результаты расчета по этим формулам дают обычно удовлетворительную сходимость. Каждая из зависимостей имеет свои особенности, достоинства и недостатки.
Известно, что зависимость прочности бетона от Ц/В строго соблюдается лишь при прочих “равных условиях”. Многие исследования показали влияние на прочность, наряду с Ц/В, удобоукладываемости бетонной смеси, объемной концентрации цементного камня и ряда других факторов. Сделан ряд попыток усложнить зависимость прочности бетона от Ц/В или В/Ц, но при этом всегда теряется основное их достоинство - однозначность функции, существенно упрощающей процедуру расчета.
Прогнозирование прочности бетона на основе правила В/Ц включает дополнительный учет многих влияющих факторов через обобщенные коэффициенты. Ряд исследователей пытались повысить "разрешающую способность" обобщенных коэффициентов в формулах прочности. В.П.Сизовым разработана специальная система поправок для коэффициента А в формуле прочности бетона, учитывающая крупность заполнителей и содержание отмучиваемых примесей, показатели подвижности и жесткости бетонной смеси, нормальную густоту цементного теста.
При определении активности цемента по действующему стандарту К=0,58 и произведение коэффициентов А1А2 изменяется в пределах 0,55...0,65 т.е. в области, рекомендованной Б.Г.Скрамтаевым и Ю.М.Баженовым.
Представление коэффициента А в виде мультипликативного фактора А=рАі предполагает допущение, что все множители Аi взаимонезависимы, не зависят от Rц и В/Ц. Учитывая, что расчетные значения прочности являются лишь базовыми и подлежат экспериментальному корректированию, это допущение можно принять с известной степенью точности.
Выражение мультипликативного коэффициента рА можно представить в виде: рАі = А А1…Аi…Аn, где Аi – коэффициент, учитывающий дополнительное влияние на прочность бетона i-го фактора (i=1…n). Коэффициент А можно находить по формуле с учетом поправочных коэффициентов.
Обычная технологическая информация позволяет учесть в мультипликативном коэффициенте, кроме основного коэффициента, определяемого с учетом системы поправок до 2...3 дополнительных коэффициентов Аi. Степень огрубленности расчетов зависит от уровня детализации используемых коэффициентов.
В то же время более точные эмпирические значения этого коэффициента для каждого срока твердения n могут находится в достаточно широкой области, в зависимости от вещественного и минералогического состава цементов и других факторов. Для бетона на обычном и алитовом цементах в возрасте 7 сут. они колеблются в диапазоне 0,60...0,75; 90 сут. – 1,1...1,35; 180 сут. – 1,3...1,5 . При применении шлако- и пуццоланового портландцементов эмпирические значения коэффициента А равны соответственно 0,4...0,6; 1,4...1,65; 1,4...2,0.
Достаточное количество экспериментальных данных накоплено для учета в формуле влияния на прочность бетона различных химических добавок.
При расчете состава монолитного бетона, а также учете последующего за пропариванием роста прочности, важным фактором, определяющим значение прочности, является температурный режим твердения. Обширные экспериментальные данные по влиянию температурного фактора на прочность бетона приведены в работах.
Введение в формулу прочности коэффициента А,t позволяет рассчитывать необходимое В/Ц для достижения бетонов заданной прочности в течение 1...28 сут. при температурах от 5 до 400С. Возможно также корректирование прогноза прочности при заданном В/Ц с учетом температурно-временного фактора.
Систему коэффициентов Аi можно конкретизировать, статистически обработав экспериментальные данные для условий определенной строительной организации или предприятия. Отклонения расчетных значений прочности от средних фактических не превышают 17%, что можно считать приемлемым на стадии проектирования.
Расчет прочности бетона, подвергаемого тепловлажностной обработке имеет ряд особенностей. Как показывает анализ многочисленных экспериментальных данных и прежде всего работ С.А.Миронова, Л.А.Малининой, Л.А.Кайсера, Р.С.Чеховой и др. прочность бетона после тепловой обработки зависит от параметров тепловой обработки, активности цемента в условиях тепловой обработки и Ц/В.
Величина Кэ, установленная при пропаривании стандартных образцов цементно-песчаного раствора по нормализованному режиму, колеблется в зависимости от особенностей применяемого цемента от 0,55 до 0,75.
Ниже приведены уравнения и полученные по ним графики базового коэффициента эффективности в зависимости от времени изотермического прогрева ?из и температуры Тпр для портландцемента М500 и шлакопортландцемента М400 Здолбуновского завода, полученные при обработке наших экспериментальных данных. Цементы были изготовлены на основе типичного среднеалюминатного клинкера (С3А=6,2-7,1%, С3S=58,5-61,3%) и включали дополнительно: портландцемент - 5% гипса, ШПЦ- 5% гипса и 50% доменного гранулированного шлака.
При расчетном определении предполагается, что длительность предварительного выдерживания бетона до пропаривания, скорость подъема температуры и охлаждения приближаются к оптимальным.
Прочность пропаренного бетона в 28 сут. может отклоняться от соответствующей прочности бетона нормального твердения в меньшую или большую сторону. Исследования и практический опыт показывают, что при оптимальном режиме пропаривания можно свести к минимуму или вообще устранить снижение 28-суточной прочности.
Для пропаренного бетона рАi=АА1А2…Аn- мультипликативный коэффициент, характеризующий влияние особенностей исходных материалов (А), режима тепловой обработки (А1), добавок-ускорителей твердения (А2) и др.
Прочность бетона после пропаривания изменяется в широком диапазоне, при этом основными факторами, определяющими ее величину, являются цементно-водное отношение (Ц/В) и активность цемента при данном режиме тепловлажностной обработки.
Л.А.Кайсер и Р.С.Чехова исследовали изменение прочности бетонов после пропаривания более чем на 40 партиях цементов разного вида, химико-минералогического состава и марок.
Значения коэффициента К справедливы при использовании малоподвижных и умеренно-жестких бетонных смесей на щебне и песке средней крупности. На прочность пропаренного бетона при Ц/В=const существенно влияет водосодержание и соответственно удобоукладываемость, что можно учесть в формуле (4.45) коэффициентом К1. Если принять для бетонов с ОК=1-4 см - К1=1, то при ОК?9 см - К1=0,9, Ж=30-50с - К1=1,1.
Влияние особенностей заполнителей пропариваемого бетона сказывается как через изменение водосодержания так и непосредственно через изменение Ц/В, необходимого для достижения заданной прочности. В последнем случае в формулу вводится коэффициент К2. При применении рядовых заполнителей К2=1. Учитывая рекомендации СНиП 5.01.23-83 (Типовые нормы расхода цемента), можно принять: К2=0,95- при применении щебня и гравия пониженной прочности или с повышенным содержанием слабых зерен, а также заполнителей с повышенным содержанием отмучиваемых частиц; К2=0,9- песков с модулем крупности менее 1,5.
Существенным резервом уменьшения необходимого Ц/В в пропариваемых бетонах может быть рост прочности при введении ускорителей твердения, учитываемый коэффициентом К3 в формуле, и твердении после тепловлажностной обработки.
При поставках цемента заводом обычно указывается величина при пропаривании по режиму (2)+3+6+2 ч. Если величина неизвестна или режим пропаривания отличается от нормализованного, для расчета Ц/В по формуле необходимо использование приведенных дополнительных количественных зависимостей.
Совокупность предлагаемых количественных зависимостей позволяет решать задачи расчета Ц/В пропариваемых бетонов с заданными прочностными показателями при различных значениях длительности и температуры твердения с учетом особенностей исходных материалов и последующего твердения после пропаривания. С их помощью возможна также количественная оценка ряда технологических решений, направленных на снижение расхода цемента и тепловой энергии.
Расчетное нахождение Ц/В пропариваемых бетонов целесообразно когда по различным причинам затруднительно его экспериментальное определение или необходимо экспрессное определение составов.

 

Версия для печати  Версия для печати


 


Энциклопедия по бетону Все о бетоне и его свойства Применение бетона в стройиндустрии Строительное оборудование Бетонные работы Все о кирпиче Все о цементе и его свойствах Нерудные материалы Сухие смеси Железобетонные иделия и конструкции Статьи о строительстве и стройиндустрии Строительные материалы Строительные материалы - часть 2 Снабжение Промышленноcть и оборудование Промышленноcть и оборудование - часть 2

Смотрите так же другие статьи
Как правильно выбрать камень для дома Натуральный камень издавна используется в качестве материала для внутренней отделки помещений. Им облицовывают стены, пол, из него изготавливают колонны, столешницы, порталы для каминов и декоративные элементы украшения интерьера. Однако для того, чтобы все э... >>>
 
О мифах радиоактивности натурального камня В последние годы важными критериями в области строительства и оформления окружающего пространства стали экологичность и натуральность материалов. Отказавшись от всевозможных синтетических заменителей, мы возвращаемся к материалам, которые уже много веков... >>>
 
Белый камень Наверное, далеко не все знают, что знаменитый белый камень, наградивший Русь эпитетом «белокаменная», послуживший материалом для строительства и изготовления украшений многих дворцов и храмов, выдержавший испытания веками – это древнейший природный материал известня... >>>
 
Строительный раствор Для скрепления кирпичей между собой применяется строительный раствор. Обычно это раствор, приготовленный из смеси цемента и песка (песок при этом необходимо тщательно просеять). Чем больше доля цемента в растворе, тем менее он пластичен (подвижен). По сравнению с известковыми ... >>>
 
Перевязка швов С целью придания кирпичной кладке прочности и монолитности используется система перевязок – определенный порядок укладки кирпичей относительно друг друга. Различаются перевязки вертикальных, продольных и поперечных швов. Перевязка продольных швов необходима для предотвращения ... >>>
 
Инструменты Основные инструменты, используемые при ведении кирпичной кладки, – кельма (мастерок), молоток-кирочка и расшивка. Кельма – стальная лопатка с деревянной ручкой. Она применяется для разравнивания раствора, заполнения им вертикальных швов кирпичной кладки и подрезки лишнего ра... >>>
 
Бетонирование фундаментов и массивов В малоармированные фундаменты и массивы укладывают бетонную смесь с осадкой конуса 1—3 см и крупностью заполнителя до 70 мм, в густоармированные — с осадкой конуса 3—6 см и крупностью, не превышающей 1/3 наименьшего расстояния между арматурными... >>>
 
Бетоны для условий сухого жаркого климата При проектировании составов бетона для условий сухого жаркого климата необходим учет температурно-влажностных условий не только при твердении конструкций, но и на стадии изготовления бетонной смеси и ее укладки в форму или опалубку. Повышенная начальная те... >>>
 
Бетоны с активными минеральными добавками В технологии бетона все шире применяют активные минеральные компоненты (активные наполнители) для экономии цемента и улучшения ряда строительно-технических свойств. Наряду с давно известной и широко применяемой добавкой как зола-унос в последние годы показа... >>>
 


© 2005-2018 г. http://vogean.com Все права защищены. Группа компаний "ВОГЕАН".
Сайт работает на системе управления сайтом General-CMS

Rambler's Top100 Яндекс цитирования џндекс.Њетрика