Оборудование для производства кирпича ООО ВОГЕАН Строительство заводов по производству кирпича
Основная деятельность нашего предприятия: строительство заводов, производство оборудования, технологических линий и станков
по производству: кирпича, блока, тротуарной плитки, бордюров и других строительных материалов (вибропрессования и гиперпрессования),
а так же силикатного кирпича (с автоклавной обработкой) и керамического кирпича (с обжигом).

Фото продукции









Эффективное утепление с помощью экструзионного пенополистирола Пеностэкс


Влажностный режим строительных конструкций тесно связан с тепловым режимом. Всем известно, что влажный строительный материал, особенно теплоизоляционный, неприемлем как с гигиенической точки зрения, так и с теплотехнической. При увеличении влажности резко увеличивается коэффициент теплопроводности и, соответственно, снижается общее сопротивление теплопередаче конструкции. Влажные конструкции являются причиной образования грибка, плесени чем делают состояние помещения антисанитарным. Кроме теплотехнического и санитарно- гигиенического значения нормальный влажностный режим ограждения имеет так же и большое техническое значение, поскольку он обуславливает долговечность ограждения. Обычный керамический кирпич, являющийся долговечным материалом в стенах, имеющих нормальную влажность, разрушается за короткое время в мокрых стенах. Расчет, приведенный ниже, показывает, что конструкция, утепленная снаружи теплоизоляционным материалом, подвержена увлажнению вследствие конденсации водяного пара. Между тем нет официальных данных о долговечности увлажненных теплоизоляционных материалов.

 

Влажностному режиму конструкции уделяется мало внимания, хотя по СНиП II-3-79* необходимо проводить расчет конструкции на паропроницаемость. СНиП рекомендует не допускать конденсацию пара и ограничивает количество конденсирующейся воды. Если эти условия не выполняются, то необходимо устанавливать пароизоляционные мембраны.

 

Мнение о том, что стены "дышат" как правило ошибочно. По существующей нормативной документации и по самой логике физического процесса ограждающая конструкция должна быть максимально защищена от проникновения в зону конденсации парообразной влаги, а нивелирование уровня влаги в помещении достигается за счет процессов сорбции (поглощения) и десорбции (отдачи) парообразной влаги материалом. Для строительных материалов предел сорбционного увлажнения колеблется в широких пределах. При 00С наименьший предел сорбционного увлажнения имеет минеральная вата w0=0,13%, а наибольший- древесина w0=15,7%. Именно поэтому говорят, что древесина "дышит", а вовсе не потому, что сквозь нее проходит пар. Дерево способно поглощать излишнюю влагу при повышенной влажности и отдавать ее при пониженной, создавая, тем самым, наиболее благоприятные условия с гигиенической точки зрения. Кстати говоря, по данным СП 23-101-2000 коэффициенты паропроницаемости древесины и пенополаста ПСБ-С практически не отличаются (0,06 мг/м.ч.Па и 0,05 мг/м.ч.Па соответственно).

 

Влажность воздуха в помещении обусловлена следующими причинами:

 

1.                      человек при работе выделяет с поверхности кожи и при дыхании 80- 130 грамм воды в сутки;

 

2.                      приготовление пиши, стирка и сушка белья, мытье полов. При этом выделение влаги может быть настолько значительным, что резко повышает влажность воздуха намного выше нормальной;

 

3.                      влажность ограждающих конструкций- обычно в первый год после окончания строительства испарение влаги с внутренних поверхностей ограждения повышает влажность внутреннего воздуха;

 

4.                      технологическими процессами.

 

Используя стандартную методику (К. Ф. Фокин «Строительная теплотехника ограждающих конструкций») можно произвести расчет количества влаги, проникающей до места конденсации и скапливающейся в ограждающей конструкции.

Возьмем в качестве исходных данных следующее:

 

Относительная влажность воздуха в помещении j=40%;

 

Температура воздуха в помещении tв=200С;

 

Относительная влажность наружного воздуха j=60%;

 

Температура наружного воздуха tн=-300С.

 

Стена из керамического кирпича толщиной 0,51 м (lА=0,58 Вт/(м . 0С), m=0,14 мг/м.ч.Па) утепляется минеральной ватой толщиной 0,1 м (lА=0,042 Вт/(м . 0С), m=0,51 мг/м.ч.Па). Оштукатуривается полимерной штукатуркой толщиной 0,008 м ((lА=0,76 Вт/(м . 0С), ), m=0,51 мг/м.ч.Па)).

 

Характеристики материалов приняты по СП 23-101-2000.

 

 

 

Сопротивление теплопередаче стены:

 

Rсущ=1/8,7+0,51/0,58+0,1/0,042+0,008/0,76+1/23=3,42 м2 . 0С/Вт.

 

Коэффициент теплопередачи:

 

k= 1/ Rсущ=1/3,42= 0,29 Вт/ м2 . 0С.

 

Сопротивление паропроницанию конструкции:

 

Rоп=0,51/0,14+0,1/0,51+0,008/0,09=3,93 м2 .ч.Па/ мг.

 

 

Вычислим удельный тепловой поток, проходящий сквозь конструкцию стены

 

q= k(tв - tн)=0,29( 20+30)=14,5 Вт/м2.

 

Температура внутренней поверхности ограждения:

t=tв- q(1/aв)=20-14,5(1/8,7)=18,30С.

 

Температура ограждения между утеплителем и кирпичной кладкой:

t=tв- q(1/aв+R1)=20-14,5(1/8,7+0,51/0,58)=5,60С.

 

Температура ограждения между утеплителем и штукатуркой:

t=tв- q(1/aв+R1+ R2)=20-14,5(1/8,7+0,51/0,58+0,1/0,042)=-27,80С.

 

Температура наружной поверхности штукатурки:

t=tв- q(1/aв+R1+ R2)=20-14,5(1/8,7+0,51/0,58+0,1/0,042+0,008/0,76)=-29,10С.

 

 

Упругость водяного пара в помещении:

 

eв= E(j/100)=2338(40/100)=935,2 Па.

 

Упругость водяного пара на улице:

 

ен= E(j/100)=165(60/100)=38 Па.

 

 

 

Определим упругость водяного пара на каждом слое конструкции.

 

Упругость пара на внутренней поверхности стены:

 

e1=935,2 Па

 

Упругость пара на поверхности между кирпичной кладкой и утеплителем:

 

e1= eв- ((eв- eн)/Rоп).SRп=935,2-((935,2-38)/3,93 . (0,51/0,14)=103,6

 

Упругость пара на поверхности между утеплителем и штукатуркой:

 

e1= eв- ((eв- eн)/Rоп).SRп=935,2-((935,2-38)/3,93 . (0,51/0,14+0,1/0,51)=59,4

 

Упругость пара на наружней поверхности штукатурки:

 

e1= eв- ((eв- eн)/Rоп).SRп=935,2-((935,2-38)/3,93 . (0,51/0,14+0,1/0,51+0,008/0,51)=55,2

 

На рис. 1 показаны температурный и влажностный режимы конструкции. Пересечение графиков упругости насыщенного водяного пара Е и реального водяного пара указывает на конденсацию влаги.

 

Количество водяного пара, проходящего сквозь стену до зоны конденсации

 

 

 

P=(eв-eк)FZm/d,

 

где

 

eв, eн- упругости водяного пара с внутренней и наружной стороны ограждения;

 

F- площадь ограждающей конструкции;

 

Z- количество часов;

 

m- коэффициент паропроницаемости;

 

d- расстояние до места конденсации.

 

Таким образом, через 1 м2 стены за 1 час проходит и конденсируется следующее количество воды.

 

Р=(935,2-86) . (0,14/0,51+0,51/0,09)=4936 мг

 

 

Несмотря на то, что исходя из расчета в 1 м2 утеплителя за сутки скапливается примерно 117 грамм воды, процесса накопления влаги и разрушения конструкций с фасадным утеплением в явном виде не наблюдается. Очевидно это происходит благодаря тому, что в качестве исходных характеристик взяты крайние значения. При более мягких условиях эксплуатации процесс накопления влаги не столь очевиден, однако он имеет место быть и несомненно снижает работоспособность и долговечность конструкций.

 

 

 

При использовании в качестве утеплителя материала с коэффициентом паропроницаемости как у плит «Пеностэкс», конденсации влаги в конструкции стены не наблюдается. Это объясняется тем, что упругость водяного пара будет меньше упругости насыщенного водяного пара по всей толще стены. Такой режим более благоприятен с гигиенической, теплотехнической и технической точки зрения.

 

В то же время на внутренней стороне плит Пеностэкс не образуется конденсат, так как поверхность плит в данном слое имеет температуру +200С, при которой образование конденсата невозможно.

 

Именно поэтому теплоизоляционный материал Пеностэкс является наиболее эффективным утеплителем.

 

 

 

 

 

Автор: Малова Юлия. www.penostex.ru

Версия для печати  Версия для печати


 


Энциклопедия по бетону Все о бетоне и его свойства Применение бетона в стройиндустрии Строительное оборудование Бетонные работы Все о кирпиче Все о цементе и его свойствах Нерудные материалы Сухие смеси Железобетонные иделия и конструкции Статьи о строительстве и стройиндустрии Строительные материалы Строительные материалы - часть 2 Снабжение Промышленноcть и оборудование Промышленноcть и оборудование - часть 2

Смотрите так же другие статьи
Исскуство таксидермии - изготовление чучел животных Если вы решили сделать чучело и в принципе неважно, какого животного, вы должны знать, что чем меньше времени пройдет с момента отстрела животного или птицы дотого времени, как вы начнете свою работу, тем лучше. У вас все должно быть под рукой. ... >>>
 
Остекление частного дома Где как не в загородном доме воплощать свои идеи в реальность? Только такой дом строится, как принято говорить в народе - «для души». И только тут можно реализовать свои мечты и идеи. Поэтому, в таком доме с выбором остекления долго думать не нужно, выбор и та... >>>
 
Текстиль для ресторанов Выбор качественного текстиля для ресторанов – очень ответственная рвбота, поэтому нет ничего удивительного в том, что его подбору уделяется особо пристальное внимание. Настоящие специалисты могут подобрать текстиль, подчеркивающий имидж вашего заведения и создать н... >>>
 
Действие морской воды на бетон Морская вода содержит сульфаты и механизм действия на бетон аналогичен рассмотренному выше. Кроме химического воздействия, кристаллизация солей в порах бетона может приводить к его разрушению вследствие давления кристаллов соли. Так как кристаллизация происходит там,... >>>
 
Действие мороза на свежеуложенный бетон Прежде чем перейти к действию замораживания и оттаивания на затвердевший бетон, т. е. касаться одной из основных проблем долговечности, остановимся на действии мороза на свежеуложенный бетон и связанном с этим вопросе зимнего бетонирования. При замораживании ... >>>
 
Зимнее бетонирование Чтобы избежать действия мороза на свежий бетон, следует принимать различные предохранительные меры. Температура во время укладки может быть повышена подогревом компонентов бетонной смеси. Воду подогревать легко, но ее температура не должна превышать 60—80° С, так как... >>>
 
Торкретирование и набрызг-бетон Способ торкретирования заключается в нанесении на вертикальные, наклонные и горизонтальные поверхности одного или нескольких защитных слоев цементно-песчаного раствора (торкрета) при помощи цемент-пушки или бетонной смеси, нагнетаемой бетон-шприцмашиной. Этот способ... >>>
 
Транспортирование бетонной смеси по трубопроводам По трубопроводам транспортируют бетонную смесь с помощью бетононасосов и пневмонагнетателей. Отечественная промышленность выпускает поршневые бетононасосы производительностью 10, 25 и 40 м3/ч. Они могут перекачивать смесь на 350 м по горизонтали и ... >>>
 
Транспортирование и подача бетонной смеси В зимних условиях транспортировать и подавать бетонную смесь следует с наименьшим числом перегрузок, чтобы снизить ее теплопотери. Для перевозок бетонной смеси применяют специально оборудованные транспортные средства. Так, кузова автосамосвалов оборудуют дв... >>>
 


© 2005-2018 г. http://vogean.com Все права защищены. Группа компаний "ВОГЕАН".
Сайт работает на системе управления сайтом General-CMS

Rambler's Top100 Яндекс цитирования џндекс.Њетрика